Jump to main content
Jump to site search

Issue 21, 2016
Previous Article Next Article

Dynamics of ordered colloidal particle monolayers at nematic liquid crystal interfaces

Author affiliations

Abstract

We prepare two-dimensional crystalline packings of colloidal particles on surfaces of the nematic liquid crystal (NLC) 5CB, and we investigate the diffusion and vibrational phonon modes of these particles using video microscopy. Short-time particle diffusion at the air–NLC interface is well described by a Stokes–Einstein model with viscosity similar to that of 5CB. Crystal phonon modes, measured by particle displacement covariance techniques, are demonstrated to depend on the elastic constants of 5CB through interparticle forces produced by LC defects that extend from the interface into the underlying bulk material. The displacement correlations permit characterization of transverse and longitudinal sound velocities of the crystal packings, as well as the particle interactions produced by the LC defects. All behaviors are studied in the nematic phase as a function of increasing temperature up to the nematic–isotropic transition.

Graphical abstract: Dynamics of ordered colloidal particle monolayers at nematic liquid crystal interfaces

Back to tab navigation

Supplementary files

Publication details

The article was received on 03 Feb 2016, accepted on 17 Apr 2016 and first published on 18 Apr 2016


Article type: Paper
DOI: 10.1039/C6SM00295A
Citation: Soft Matter, 2016,12, 4715-4724
  •   Request permissions

    Dynamics of ordered colloidal particle monolayers at nematic liquid crystal interfaces

    W. Wei, M. A. Gharbi, M. A. Lohr, T. Still, M. D. Gratale, T. C. Lubensky, K. J. Stebe and A. G. Yodh, Soft Matter, 2016, 12, 4715
    DOI: 10.1039/C6SM00295A

Search articles by author

Spotlight

Advertisements