Jump to main content
Jump to site search
PLANNED MAINTENANCE Close the message box

Scheduled maintenance upgrade on Thursday 4th of May 2017 from 8.00am to 9.00am (BST).

During this time our websites will be offline temporarily. If you have any questions please use the feedback button on this page. We apologise for any inconvenience this might cause and thank you for your patience.


Issue 2, 2017
Previous Article Next Article

Fluorogenic protein labeling using a genetically encoded unstrained alkene

Author affiliations

Abstract

We developed a new fluorogenic bioorthogonal reaction that is based on the inverse electron-demand Diels–Alder reaction between styrene (an unstrained alkene) and a simple tetrazine. The reaction forms a new fluorophore with no literature precedent. We have identified an aminoacyl-tRNA synthetase/tRNA pair for the efficient and site-specific incorporation of a styrene-containing amino acid into proteins in response to amber nonsense codon. Fluorogenic labeling of purified proteins and intact proteins in live cells were demonstrated. The fluorogenicity of the styrene–tetrazine reaction can be potentially applied to the study of protein folding and function under physiological conditions with low background fluorescence interference.

Graphical abstract: Fluorogenic protein labeling using a genetically encoded unstrained alkene

Back to tab navigation
Please wait while Download options loads

Supplementary files

Publication details

The article was received on 14 Aug 2016, accepted on 23 Sep 2016 and first published on 26 Sep 2016


Article type: Edge Article
DOI: 10.1039/C6SC03635J
Citation: Chem. Sci., 2017,8, 1141-1145
  • Open access: Creative Commons BY license
  •   Request permissions

    Fluorogenic protein labeling using a genetically encoded unstrained alkene

    X. Shang, X. Song, C. Faller, R. Lai, H. Li, R. Cerny, W. Niu and J. Guo, Chem. Sci., 2017, 8, 1141
    DOI: 10.1039/C6SC03635J

    This article is licensed under a Creative Commons Attribution 3.0 Unported Licence. Material from this article can be used in other publications provided that the correct acknowledgement is given with the reproduced material.

    Reproduced material should be attributed as follows:

    • For reproduction of material from NJC:
      [Original citation] - Published by The Royal Society of Chemistry (RSC) on behalf of the Centre National de la Recherche Scientifique (CNRS) and the RSC.
    • For reproduction of material from PCCP:
      [Original citation] - Published by the PCCP Owner Societies.
    • For reproduction of material from PPS:
      [Original citation] - Published by The Royal Society of Chemistry (RSC) on behalf of the European Society for Photobiology, the European Photochemistry Association, and RSC.
    • For reproduction of material from all other RSC journals:
      [Original citation] - Published by The Royal Society of Chemistry.

    Information about reproducing material from RSC articles with different licences is available on our Permission Requests page.

Search articles by author