Jump to main content
Jump to site search

Issue 7, 2016
Previous Article Next Article

An adhesive elastomeric supramolecular polyurethane healable at body temperature

Author affiliations

Abstract

In this paper, we report the synthesis and healing ability of a non-cytotoxic supramolecular polyurethane network whose mechanical properties can be recovered efficiently (>99%) at the temperature of the human body (37 °C). Rheological analysis revealed an acceleration in the drop of the storage modulus above 37 °C, on account of the dissociation of the supramolecular polyurethane network, and this decrease in viscosity enables the efficient recovery of the mechanical properties. Microscopic and mechanical characterisation has shown that this material is able to recover mechanical properties across a damage site with minimal contact required between the interfaces and also demonstrated that the mechanical properties improved when compared to other low temperature healing elastomers or gel-like materials. The supramolecular polyurethane was found to be non-toxic in a cytotoxicity assay carried out in human skin fibroblasts (cell viability > 94% and non-significantly different compared to the untreated control). This supramolecular network material also exhibited excellent adhesion to pig skin and could be healed completely in situ post damage indicating that biomedical applications could be targeted, such as artificial skin or wound dressings with supramolecular materials of this type.

Graphical abstract: An adhesive elastomeric supramolecular polyurethane healable at body temperature

Back to tab navigation

Supplementary files

Publication details

The article was received on 16 Dec 2015, accepted on 14 Mar 2016 and first published on 15 Mar 2016


Article type: Edge Article
DOI: 10.1039/C5SC04864H
Citation: Chem. Sci., 2016,7, 4291-4300
  • Open access: Creative Commons BY license
  •   Request permissions

    An adhesive elastomeric supramolecular polyurethane healable at body temperature

    A. Feula, X. Tang, I. Giannakopoulos, A. M. Chippindale, I. W. Hamley, F. Greco, C. Paul Buckley, C. R. Siviour and W. Hayes, Chem. Sci., 2016, 7, 4291
    DOI: 10.1039/C5SC04864H

    This article is licensed under a Creative Commons Attribution 3.0 Unported Licence. Material from this article can be used in other publications provided that the correct acknowledgement is given with the reproduced material.

    Reproduced material should be attributed as follows:

    • For reproduction of material from NJC:
      [Original citation] - Published by The Royal Society of Chemistry (RSC) on behalf of the Centre National de la Recherche Scientifique (CNRS) and the RSC.
    • For reproduction of material from PCCP:
      [Original citation] - Published by the PCCP Owner Societies.
    • For reproduction of material from PPS:
      [Original citation] - Published by The Royal Society of Chemistry (RSC) on behalf of the European Society for Photobiology, the European Photochemistry Association, and RSC.
    • For reproduction of material from all other RSC journals:
      [Original citation] - Published by The Royal Society of Chemistry.

    Information about reproducing material from RSC articles with different licences is available on our Permission Requests page.

Search articles by author

Spotlight

Advertisements