Issue 104, 2016, Issue in Progress

RNA model evaluation based on MD simulation of four tRNA analogs

Abstract

High resolution 3D structures of tRNA molecules are scarce. Therefore, there is a burning need for tools aiming at three-dimensional (3D) RNA structure characterization able to provide accurate information on the tertiary structure of ribonucleic acids. In this study, RNA structure assessment based on primary sequence, molecular dynamics (MD) simulations as well as selected RNA model evaluation methods are used to propose and evaluate four mitochondrial tRNA analogs. The 3D structures of tRNAAla, tRNAGly, tRNAHis, and tRNAPhe are generated from primary sequence using mFold and RNAComposer, and subjected to 100 ns explicit solvent MD simulations with AMBER. The global and local root-mean-square deviations (RMSD), interaction network fidelity (INF), deformation index (DI), the contact area difference-score (CAD-score) as well as principal component analysis (PCA) revealed that the largest changes occurring during MD simulation were in the D–T and anticodon loops but each of the studied tRNA analog is affected differently. tRNAAla and tRNAPhe undergo limited structure perturbation, mostly in the D–T loops regions, while tRNAGly changes the geometry within the anticodon loop. The tRNAHis analog is the most flexible, changes its structure significantly, including separation of the D and T loops. Furthermore, the anticodon loops are visibly more stable than the D–T region and their structure does not change that significantly, except for tRNAGly.

Graphical abstract: RNA model evaluation based on MD simulation of four tRNA analogs

Supplementary files

Article information

Article type
Paper
Submitted
08 Jun 2016
Accepted
17 Oct 2016
First published
20 Oct 2016

RSC Adv., 2016,6, 101778-101789

RNA model evaluation based on MD simulation of four tRNA analogs

A. Grzybkowska, D. Jędrzejczyk, M. Rostkowski, A. Chworos and A. Dybala-Defratyka, RSC Adv., 2016, 6, 101778 DOI: 10.1039/C6RA14933B

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements