Issue 79, 2016, Issue in Progress

The impact of structural variation in simple lanthanide binding peptides

Abstract

A series of di-, tri- and tetra-peptides were synthesised using L- and D-glutamic acid in order to determine the effects of peptide length and stereochemistry on lanthanide binding affinity. Binding studies with Eu were performed at neutral pH, which is relevant to biological applications, and also under industrially relevant acidic conditions. Increasing peptide length resulted in higher binding affinity but the effect of stereochemistry was dependent on the peptide length. Modelling and experimental characterisation of the peptide : Eu complexes formed suggested that multiple modes of binding were present, with the Eu cation coordinated by the terminal and side chain carboxylic acids of the peptides as well as by backbone carbonyl groups. The peptide with the strongest binding affinity was the tetra-peptide with alternating L- and D-glutamic acid residues, which was able to bind Eu at pH values as low as 4. This peptide was appended with a long-chain alkene and used to covalently functionalise titania nanoparticles. The resulting peptide functionalised titania demonstrated selective sorption of lanthanides over Ca, Ni, Sr and Cs ions. Overall, a deeper understanding of how peptide structure affects lanthanide binding affinity has been gained and the potential of these peptides as selective ligands for separations at acidic pH has been demonstrated.

Graphical abstract: The impact of structural variation in simple lanthanide binding peptides

Supplementary files

Article information

Article type
Paper
Submitted
18 May 2016
Accepted
18 Jul 2016
First published
03 Aug 2016

RSC Adv., 2016,6, 75336-75346

The impact of structural variation in simple lanthanide binding peptides

J. Veliscek-Carolan, T. L. Hanley and K. A. Jolliffe, RSC Adv., 2016, 6, 75336 DOI: 10.1039/C6RA12880G

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements