Jump to main content
Jump to site search

Issue 71, 2016
Previous Article Next Article

Incorporation of graphene into silica-based aerogels and application for water remediation

Author affiliations

Abstract

Graphene/silica nanocomposites in the form of highly porous aerogels are obtained for the first time by integrating a novel approach for the production of low defectivity graphene with a two-step route for the synthesis of a silica-based monolith. Different from the other synthetic methods, the use of co-gelation of a dispersed phase and matrix followed by high temperature supercritical drying leads to well dispersed bilayered graphene inside a high surface area silica matrix with an open texture porosity. Physico-chemical characterization provides evidence that the developed graphene/SiO2 bulk aerogel nanocomposites combine the distinct features of both the dispersed graphene sheets and the porous silica aerogel matrix. It was found that incorporation of graphene in the aerogel, even at low loading, increases significantly the hydrophobic behaviour of the materials. This, combined with the high surface/volume ratio of the aerogel, makes the resulting nanocomposite a suitable candidate as a novel oil sorbent for water remediation. In particular, the developed graphene/silica aerogels selectively and quickly uptake oil, up to more than 7 times the aerogel sorbent mass, from oil–water mixtures, and keeps floating on water after absorbing the oil phase. The suitability of the developed composites as a class of novel sorbents for environmental remediation in the occurrence of flammable liquid spills, where burning represents a major threat, is supported by the specific features of silica aerogels such as a relative fire-resistance, in addition to the high porosity and hydrophobic nature.

Graphical abstract: Incorporation of graphene into silica-based aerogels and application for water remediation

Back to tab navigation

Supplementary files

Publication details

The article was received on 13 Apr 2016, accepted on 30 Jun 2016 and first published on 04 Jul 2016


Article type: Paper
DOI: 10.1039/C6RA09618B
Citation: RSC Adv., 2016,6, 66516-66523
  • Open access: Creative Commons BY-NC license
  •   Request permissions

    Incorporation of graphene into silica-based aerogels and application for water remediation

    D. Loche, L. Malfatti, D. Carboni, V. Alzari, A. Mariani and M. F. Casula, RSC Adv., 2016, 6, 66516
    DOI: 10.1039/C6RA09618B

    This article is licensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence. Material from this article can be used in other publications provided that the correct acknowledgement is given with the reproduced material and it is not used for commercial purposes.

    Reproduced material should be attributed as follows:

    • For reproduction of material from NJC:
      [Original citation] - Published by The Royal Society of Chemistry (RSC) on behalf of the Centre National de la Recherche Scientifique (CNRS) and the RSC.
    • For reproduction of material from PCCP:
      [Original citation] - Published by the PCCP Owner Societies.
    • For reproduction of material from PPS:
      [Original citation] - Published by The Royal Society of Chemistry (RSC) on behalf of the European Society for Photobiology, the European Photochemistry Association, and RSC.
    • For reproduction of material from all other RSC journals:
      [Original citation] - Published by The Royal Society of Chemistry.

    Information about reproducing material from RSC articles with different licences is available on our Permission Requests page.

Search articles by author

Spotlight

Advertisements