Issue 39, 2016

Organic light-emitting devices based on solution-processable small molecular emissive layers doped with interface-engineering additives

Abstract

In this study, we investigate small molecular organic light-emitting diodes (SM-OLEDs) consisting of emission layers (EMLs) fabricated using a solution-coating process of self-metered horizontal dip- (H-dip-) coating. The EML used was composed of a co-mixed small molecular host matrix of hole-transporting 4,4′,4′′-tris(9-carbazolyl)-triphenylamine (TcTa) and electron-transporting 2,7-bis (diphenyl phosphoryl)-9,9′-spirobifluorene (SPPO13) doped with blue-, green-, and/or red-emitting phosphorescent iridium complexes. To improve the electron-injecting and hole-blocking properties at the cathode interface and to enhance the film-forming capabilities, an interface-engineering additive of poly(oxyethylene tridecyl ether) (PTE) was mixed with the small molecular EMLs. Using PTE additives was shown to reduce dramatically the formation of film defects such as nano-pinholes in the EMLs, resulting in thin and homogeneous PTE-mixed EMLs with smooth surface morphologies, even when using a single H-dip-coating process. The use of simple H-dip-coated EMLs mixed with PTEs in SM-OLEDs resulted in good device performance, with maximum luminance levels of 29 200 cd m−2, 115 000 cd m−2, and 16 400 cd m−2, with corresponding peak current efficiencies of 18.8 cd A−1, 31.2 cd A−1, and 10.0 cd A−1, for blue, green, and red SM-OLEDs, respectively. Furthermore, we demonstrated the feasibility of fabricating large-area and high-performance solution-processable SM-OLEDs using H-dip-coated EMLs doped with PTEs. These results clearly indicate that H-dip-coated small molecular EMLs mixed with PTE can be used to yield simple, bright, and efficient solution-processable SM-OLEDs.

Graphical abstract: Organic light-emitting devices based on solution-processable small molecular emissive layers doped with interface-engineering additives

Article information

Article type
Paper
Submitted
15 Feb 2016
Accepted
23 Mar 2016
First published
24 Mar 2016

RSC Adv., 2016,6, 33063-33071

Organic light-emitting devices based on solution-processable small molecular emissive layers doped with interface-engineering additives

T. Ha, Y. Kim, G. Heo, I. Hwang, H. G. Jeon and B. Park, RSC Adv., 2016, 6, 33063 DOI: 10.1039/C6RA04092F

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements