Jump to main content
Jump to site search

Issue 65, 2016
Previous Article Next Article

Electrical characterization of amorphous LiAlO2 thin films deposited by atomic layer deposition

Author affiliations

Abstract

LiAlO2 thin films deposited by atomic layer deposition (ALD) have a potential application as an electrolyte in three-dimensional (3D) all-solid-state microbatteries. In this study, Li-ion conductivity of such films is investigated by both in-plane and cross-plane methods. LiAlO2 thin films with a Li composition of [Li]/([Li] + [Al]) = 0.46 and an amorphous structure were grown by ALD with thicknesses of 90, 160 and 235 nm on different substrates. The electrical characterization was conducted by impedance spectroscopy using inert electrodes over a temperature range of 25–200 °C in an inert atmosphere. In-plane conductivities were obtained from films on insulating sapphire substrates, whereas cross-plane conductivities were measured from films on conducting titanium substrates. For the first time, comparison of the in-plane and cross-plane conductivities in these ALD LiAlO2 films has been achieved. More comparable results are obtained using a cross-plane method, whereas in-plane conductivity measurements demonstrate a considerable thickness-dependence with thinner film thickness. The room-temperature conductivity of the LiAlO2 films has been determined to be in the order of 10−10 S cm−1 with an activation energy of ca. 0.8 eV.

Graphical abstract: Electrical characterization of amorphous LiAlO2 thin films deposited by atomic layer deposition

Back to tab navigation

Publication details

The article was received on 02 Feb 2016, accepted on 06 Jun 2016 and first published on 07 Jun 2016


Article type: Paper
DOI: 10.1039/C6RA03137D
Author version
available:
Download author version (PDF)
Citation: RSC Adv., 2016,6, 60479-60486
  • Open access: Creative Commons BY license
  •   Request permissions

    Electrical characterization of amorphous LiAlO2 thin films deposited by atomic layer deposition

    Y. Hu, A. Ruud, V. Miikkulainen, T. Norby, O. Nilsen and H. Fjellvåg, RSC Adv., 2016, 6, 60479
    DOI: 10.1039/C6RA03137D

    This article is licensed under a Creative Commons Attribution 3.0 Unported Licence. Material from this article can be used in other publications provided that the correct acknowledgement is given with the reproduced material.

    Reproduced material should be attributed as follows:

    • For reproduction of material from NJC:
      [Original citation] - Published by The Royal Society of Chemistry (RSC) on behalf of the Centre National de la Recherche Scientifique (CNRS) and the RSC.
    • For reproduction of material from PCCP:
      [Original citation] - Published by the PCCP Owner Societies.
    • For reproduction of material from PPS:
      [Original citation] - Published by The Royal Society of Chemistry (RSC) on behalf of the European Society for Photobiology, the European Photochemistry Association, and RSC.
    • For reproduction of material from all other RSC journals:
      [Original citation] - Published by The Royal Society of Chemistry.

    Information about reproducing material from RSC articles with different licences is available on our Permission Requests page.

Search articles by author

Spotlight

Advertisements