Synthesis of curly graphene nanoribbon/polyaniline/MnO2 composite and its application in supercapacitor†
Abstract
Curly graphene nanoribbon/polyaniline/MnO2 (CGNR/PANI/MnO2) nanocomposites with a unique structure is prepared. The formation mechanism of the CGNR/PANI/MnO2 nanocomposite was proposed, and the morphology and structure were characterized by electron microscopy, X-ray diffraction, and Raman spectroscopy. The CGNR/PANI/MnO2 nanocomposite was investigated for supercapacitor applications. The CGNR/PANI/MnO2 electrode delivered a very high specific capacitance of 496 F g−1, which was much higher than that of CGNR (131 F g−1), PANI (301 F g−1) and MnO2 (33 F g−1), whereas 81.1% of its initial capacitance was retained after 5000 cycles at a scan rate of 50 mV s−1. The CGNR/PANI/MnO2 electrode was also evaluated via a two-electrode configuration, and the supercapacitor delivered a specific capacitance of 103 F g−1. The enhanced electrochemical performance of the CGNR/PANI/MnO2 electrode was ascribed to the unique structure and the synergetic effect of the three components in the composite.
 
                



 Please wait while we load your content...
                                            Please wait while we load your content...
                                        