Issue 24, 2016

Antimicrobial electrospun poly(ε-caprolactone) scaffolds for gingival fibroblast growth

Abstract

This study discusses the value of polymer electrospun materials in three-dimensional (3D) scaffolds and antibacterial wound dressings for potential dental applications. Polycaprolactone (PCL) and polyvinylpyrrolidone (PVP) nanofibers were used as bases for gingival fibroblast (HGF-1 cell line) growth. HGF-1 cells cultured on both types of nanofibers were found to have normal morphology and growth by selective staining of the nuclei and cytoskeleton. The nanofibers were synthesized on different collectors to obtain a random or parallel alignment. Cell growth was observed along the nanofibers. In addition, antibiotics were incorporated within the nanofibers and studied by means of Raman spectroscopy and differential scanning calorimetry. The release profile of the antibiotics was determined by broad band dielectric measurements. The drug was found to be released by Fickian diffusion. The WST-1 test found PCL and PCL/ampicillin nanofibers to have minimal cytotoxicity. The antibacterial activity of materials containing ampicillin was evaluated by zone inhibition against a selected oral strain of Streptococcus sanguinis. The bacterial growth was inhibited by antibiotic release from PCL/ampicillin mats.

Graphical abstract: Antimicrobial electrospun poly(ε-caprolactone) scaffolds for gingival fibroblast growth

Article information

Article type
Paper
Submitted
27 Jan 2016
Accepted
04 Feb 2016
First published
10 Feb 2016

RSC Adv., 2016,6, 19647-19656

Antimicrobial electrospun poly(ε-caprolactone) scaffolds for gingival fibroblast growth

A. Baranowska-Korczyc, A. Warowicka, M. Jasiurkowska-Delaporte, B. Grześkowiak, M. Jarek, B. M. Maciejewska, J. Jurga-Stopa and S. Jurga, RSC Adv., 2016, 6, 19647 DOI: 10.1039/C6RA02486F

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements