Electrochemical performance in alkaline and neutral electrolytes of a manganese phosphate material possessing a broad potential window
Abstract
An underlying electrode material of manganese phosphate has been designed and synthesized, possessing wide potential windows (−0.9–0.7 V in neutral and −0.5–0.6 V in alkaline electrolyte), satisfying specific capacitances (203 F g−1 in neutral and 194 F g−1 in alkaline electrolyte), outstanding rate capabilities and excellent cycling stabilities. The morphological characteristics and electrochemical analyses indicate that the layered crystal structure offers many nano-paths and improves the diffusion of electrolyte ions, which can noticeably promote electrochemical performance. Furthermore, a Mn3(PO4)2//AC asymmetric supercapacitor and a Mn3(PO4)2//Mn3(PO4)2 symmetric supercapacitor have been assembled at a cell voltage between 0 and 1.6 V, and exhibit excellent electrochemical stabilities and stable energy and power characteristics, which reveal that this manganese phosphate material is promising for electrochemical energy storage applications.
Please wait while we load your content...