Jump to main content
Jump to site search
PLANNED MAINTENANCE Close the message box

Scheduled maintenance work on Wednesday 3rd January 2017 from 11.00am to 11.15am (GMT).

During this time our website performance may be temporarily affected. If you have any questions please use the feedback button available under our menu button. We apologise for any inconvenience this might cause and thank you for your patience.


Issue 31, 2016
Previous Article Next Article

Zinc oxide quantum dots: multifunctional candidates for arresting C2C12 cancer cells and their role towards caspase 3 and 7 genes

Author affiliations

Abstract

Recently, nanoscale (<100 nm) inorganic materials, especially spherical shaped zinc oxide quantum dots (ZnO-QDs), have received a lot of attention from the broad community because of their potential utilization in various technologies. Due to their large surface to volume (S/V) ratios and extremely high reactivities, they can easily penetrate in various biological identities, such as cells and proteins, and therefore can sense, diagnose and cure different biological systems. The present study describes the facile synthesis of crystalline ZnO-QDs via a solution process. In addition, C2C12 myoblast cancer cells have been treated with different doses of ZnO-QDs at different incubation times (24, 48, 72 and 96 h). The rate of inhibition of cells was observed using an MTT assay, whereas the morphology of the cells was observed by confocal microscopy (CLSM). The MTT and CLSM investigations confirmed that with an increase in the incubation time, the population density of cancer cells was decreased when treated with ZnO-QDs. The dose dependent apoptosis correlated with intracellular production of reactive oxygen species (ROS) from C2C12 cancer cells was also measured in presence of ZnO-QDs. Moreover, the effect/apoptosis of these QDs was also checked in the presence of candidate genes such as caspase 3/7 with GAPDH. Reverse transcription polymerase chain reaction (RT-PCR) analysis demonstrates the up-regulation of caspase 3/7 genes in cells subsequently treated with ZnO-QDs at low and high concentrations.

Graphical abstract: Zinc oxide quantum dots: multifunctional candidates for arresting C2C12 cancer cells and their role towards caspase 3 and 7 genes

Back to tab navigation

Supplementary files

Publication details

The article was received on 02 Dec 2015, accepted on 22 Feb 2016 and first published on 23 Feb 2016


Article type: Paper
DOI: 10.1039/C5RA25668B
Author version available: Download Author version (PDF)
Citation: RSC Adv., 2016,6, 26111-26120
  •   Request permissions

    Zinc oxide quantum dots: multifunctional candidates for arresting C2C12 cancer cells and their role towards caspase 3 and 7 genes

    R. Wahab, F. Khan, Y. B. Yang, I. H. Hwang, H. Shin, J. Ahmad, S. Dwivedi, S. T. Khan, M. A. Siddiqui, Q. Saquib, J. Musarrat, A. A. Al-Khedhairy, Y. K. Mishra and B. A. Ali, RSC Adv., 2016, 6, 26111
    DOI: 10.1039/C5RA25668B

Search articles by author

Spotlight

Advertisements