Issue 1, 2016

Graphene membranes as novel preconcentration platforms for chromium speciation by total reflection X-ray fluorescence

Abstract

Fabrication of unmodified graphene membranes for their application as selective sorptive platforms of hexavalent chromium [Cr(VI)] is described for the first time. Multilayer graphene membranes are synthesized by drop-casting of graphene oxide (GO) onto a glass substrate followed by mild thermal reduction. As-prepared membranes are formatted to fit the measurement area of total reflection X-ray fluorescence (TXRF). Structural and morphological characterization by atomic force microscopy (AFM) and X-ray photoelectron spectroscopy (XPS) shows that graphene membranes are 122 nm height and contain non-reduced functional groups resulting in lattice defects. Adsorption isotherm models and characterization by time-of-flight secondary ion mass spectrometry (TOF-SIMS) indicate that adsorption sites on graphene membranes are uniformly distributed and bind Cr(VI) as a monolayer, both by electrostatic interaction and chemisorption. Graphene membranes display high flexibility and become conical-shaped when immersed into stirred liquid samples. When combining graphene membrane preconcentration and TXRF, a detection limit of 0.08 μg L−1 Cr(VI) is obtained. Repeatability expressed as relative standard deviation is 3% (N = 5). Two certified reference materials, i.e. CASS-4 seawater and NWTM-27.2 lake water, are used for testing accuracy. The proposed method is simple, solvent-free and sensitive, being suitable for Cr speciation in water including high salinity samples.

Graphical abstract: Graphene membranes as novel preconcentration platforms for chromium speciation by total reflection X-ray fluorescence

Supplementary files

Article information

Article type
Paper
Submitted
03 Nov 2015
Accepted
06 Dec 2015
First published
08 Dec 2015

RSC Adv., 2016,6, 669-676

Graphene membranes as novel preconcentration platforms for chromium speciation by total reflection X-ray fluorescence

V. Romero, I. Costas-Mora, I. Lavilla and C. Bendicho, RSC Adv., 2016, 6, 669 DOI: 10.1039/C5RA23116G

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements