Issue 21, 2016

Electrochemical properties of PVA–GO/PEDOT nanofibers prepared using electrospinning and electropolymerization techniques

Abstract

Conducting nanofibers composed of poly(vinyl alcohol) (PVA), graphene oxide (GO) and poly(3,4-ethylenedioxythiophene) (PEDOT) were fabricated via a combined method using electrospinning and electropolymerization techniques. A small amount of GO was dispersed into PVA as the precursor solution for electrospinning, resulting in free-bead nanofiber structures with a diameter range less than 200 nm. SEM images of the obtained nanofiber revealed that PEDOT grew well on the surface of the electrospun nanofibers during the potentiostatic mode of the electropolymerization process. The presence of GO and PEDOT was confirmed by FTIR and Raman spectroscopy analyses. Comparing with the PVA/PEDOT nanofiber, the experimental results indicate that the addition of GO improved the electrochemical performance of the nanofibers. The electrochemical measurements demonstrated that the PVA–GO/PEDOT composite nanofiber could enhance the current response and reduce the charge transfer resistance of the nanofiber.

Graphical abstract: Electrochemical properties of PVA–GO/PEDOT nanofibers prepared using electrospinning and electropolymerization techniques

Article information

Article type
Paper
Submitted
13 Oct 2015
Accepted
25 Jan 2016
First published
11 Feb 2016

RSC Adv., 2016,6, 17720-17727

Author version available

Electrochemical properties of PVA–GO/PEDOT nanofibers prepared using electrospinning and electropolymerization techniques

N. A. Zubair, N. A. Rahman, H. N. Lim, R. M. Zawawi and Y. Sulaiman, RSC Adv., 2016, 6, 17720 DOI: 10.1039/C5RA21230H

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements