Jump to main content
Jump to site search
PLANNED MAINTENANCE Close the message box

Scheduled maintenance upgrade on Thursday 4th of May 2017 from 8.00am to 9.00am (BST).

During this time our websites will be offline temporarily. If you have any questions please use the feedback button on this page. We apologise for any inconvenience this might cause and thank you for your patience.


Issue 11, 2016
Previous Article Next Article

Spectroscopic and electrochemical properties of ruthenium complexes with photochromic triarylamine–dithienylethene–acetylide ligands

Author affiliations

Abstract

A new dithienylperfluorocyclopentene–acetylide ligand (L2o) appended with a triarylamine moiety was used to synthesize two ruthenium(II) complexes with a photoswitchable electronic interaction between inorganic (Ru) and organic (triarylamine) redox centres. The reactions of cis-Ru(dppe)2Cl2 with one or two equiv. of L2o produce trans-Ru(dppe)2(L2o)Cl (1o) or trans-Ru(dppe)2(L2o)2 (2oo), respectively. As demonstrated by 1H and 31P NMR spectral studies, 2oo shows stepwise photocyclization leading first to the singly ring-closed species 2co, and then to the doubly ring-closed species 2cc upon irradiation at 312 nm. Complex 1o exhibits two separated anodic waves at 0.60 (RuII/III) and 0.86 V (N0/+) caused by inherent redox dissymmetry and electronic interaction. Upon conversion to the ring-closed species 1c, three reversible anodic waves are found at 0.28, 0.37 and 0.66 V due to the oxidation of the ring-closed DTE, triarylamine and Ru, respectively. One-electron oxidized species [1c]+ displays broad and moderately intense absorption bands in the near-infrared region induced by charge delocalization. For the oxidized species [2oo]2+/[2co]2+/[2cc]2+, charge delocalization along the molecular backbone shows a progressive increase following the stepwise photocyclization process.

Introduction to the international collaboration

Zhong-Ning Chen and Denis Jacquemin launch a collaborative research project on multi-photochromism in metal complexes encompassing several photochromic moieties. The group of Chen is devoted to the experimental synthesis and characterization of metal coordinated systems with multi-photochromic dithienylethene (DTE) moieties and the use of stepwise or selective photochromism to modulate switchable electronic communication and charge delocalization in heterometallic or inorganic–organic mixed-valence systems. Jacquemin's group focuses on theoretical investigation of the mechanism underlying the multi-photochromism through a time dependent density functional theory (TD-DFT) approach, taking into account when necessary spin–orbit couplings (SOC) so as to model potential intersystem crossings (ISC).

Graphical abstract: Spectroscopic and electrochemical properties of ruthenium complexes with photochromic triarylamine–dithienylethene–acetylide ligands

Back to tab navigation
Please wait while Download options loads

Supplementary files

Publication details

The article was received on 07 Jun 2016, accepted on 09 Sep 2016 and first published on 12 Sep 2016


Article type: Research Article
DOI: 10.1039/C6QI00175K
Citation: Inorg. Chem. Front., 2016,3, 1432-1443
  •   Request permissions

    Spectroscopic and electrochemical properties of ruthenium complexes with photochromic triarylamine–dithienylethene–acetylide ligands

    D. Zhang, J. Wang, D. Jacquemin and Z. Chen, Inorg. Chem. Front., 2016, 3, 1432
    DOI: 10.1039/C6QI00175K

Search articles by author