Issue 43, 2016

In situ dual-functional water purification with simultaneous oil removal and visible light catalysis

Abstract

Dual purification of both oily wastewater and dye-polluted water for enhancing the use of freshwater is an urgent task. We report herein, the facile synthesis of inorganic semiconductor nanomaterials anchored mesh for in situ dual-functional water purification. This resultant mesh combines the excellent capacity of oil removal and the advantage of photocatalytic performance for dye degradation under visible light irradiation at the same time. In addition, the mesh was easily regenerated and remained unaltered in photocatalytic performance over five successive dye degradation cycles. Given the innovative integration of special wettability and photocatalytic activity of such a semiconductor material under visible light for dual elimination of various pollutants from water, we anticipate that this approach will provide a promising pathway for versatile applications in oily wastewater treatment, water purification and so on.

Graphical abstract: In situ dual-functional water purification with simultaneous oil removal and visible light catalysis

Supplementary files

Article information

Article type
Paper
Submitted
19 Aug 2016
Accepted
10 Oct 2016
First published
11 Oct 2016

Nanoscale, 2016,8, 18558-18564

In situ dual-functional water purification with simultaneous oil removal and visible light catalysis

N. Liu, R. Qu, Y. Chen, Y. Cao, W. Zhang, X. Lin, Y. Wei, L. Feng and L. Jiang, Nanoscale, 2016, 8, 18558 DOI: 10.1039/C6NR06583J

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements