Issue 20, 2016

Growth and characterization of epitaxially stabilized ceria(001) nanostructures on Ru(0001)

Abstract

We have studied (001) surface terminated cerium oxide nanoparticles grown on a ruthenium substrate using physical vapor deposition. Their morphology, shape, crystal structure, and chemical state are determined by low-energy electron microscopy and micro-diffraction, scanning probe microscopy, and synchrotron-based X-ray absorption spectroscopy. Square islands are identified as CeO2 nanocrystals exhibiting a (001) oriented top facet of varying size; they have a height of about 7 to 10 nm and a side length between about 50 and 500 nm, and are terminated with a p(2 × 2) surface reconstruction. Micro-illumination electron diffraction reveals the existence of a coincidence lattice at the interface to the ruthenium substrate. The orientation of the side facets of the rod-like particles is identified as (111); the square particles are most likely of cuboidal shape, exhibiting (100) oriented side facets. The square and needle-like islands are predominantly found at step bunches and may be grown exclusively at temperatures exceeding 1000 °C.

Graphical abstract: Growth and characterization of epitaxially stabilized ceria(001) nanostructures on Ru(0001)

Article information

Article type
Paper
Submitted
22 Mar 2016
Accepted
01 May 2016
First published
03 May 2016
This article is Open Access
Creative Commons BY-NC license

Nanoscale, 2016,8, 10849-10856

Growth and characterization of epitaxially stabilized ceria(001) nanostructures on Ru(0001)

J. I. Flege, J. Höcker, B. Kaemena, T. O. Menteş, A. Sala, A. Locatelli, S. Gangopadhyay, J. T. Sadowski, S. D. Senanayake and J. Falta, Nanoscale, 2016, 8, 10849 DOI: 10.1039/C6NR02393B

This article is licensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence. You can use material from this article in other publications, without requesting further permission from the RSC, provided that the correct acknowledgement is given and it is not used for commercial purposes.

To request permission to reproduce material from this article in a commercial publication, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party commercial publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements