Issue 11, 2016

Rigid geometry 8-arylimino-7,7-dimethyl-5,6-dihydroquinolyl nickel bromides: single-site active species towards ethylene polymerization

Abstract

The fused ring heterocyclic ketone, 5,6-dihydro-7,7-dimethylquinolin-8-one, was prepared and employed for the synthesis of a series of 8-arylimino-7,7-dimethyl-5,6-dihydroquinoline derivatives (aryl = 2,6-Me2Ph (L1), 2,6-Et2Ph (L2), 2,4,6-Me3Ph (L3), 2,6-Et2-4-MePh (L4), 2,6-i-Pr2Ph (L5)). The reaction of L1–L4 with (DME)NiBr2 (DME = 1,2-dimethoxyethane) gave the corresponding cationic bis-chelates, [(Lx)2NiBr][Br] (Lx = L1 (Ni1), L2 (Ni2), L3 (Ni3), L4 (Ni4)), as bromide salts; no such complex could be isolated with the most sterically bulky L5. All new compounds were characterized using IR spectroscopy, elemental analysis and in the case of L1L5 using 1H and 13C NMR spectroscopy. Furthermore, the molecular structures of Ni1 and Ni3 have been determined and they reveal cation–anion pairs based on a trigonal bipyramidal nickel-containing cation charge balanced by a bromide counterion. In addition, X-ray photoelectron spectroscopy (XPS) was used to probe the solid state structures of L1, L3 and Ni1Ni4; this technique provided valuable information regarding the net charge on nickel within the complexes. Upon activation with either methylaluminoxane (MAO) or ethylaluminium sesquichloride (EASC), all nickel complexes exhibited high activities towards ethylene polymerization and produced polyethylene waxes with low molecular weights. The catalytic activities, Ni1 [2,6-di(Me)] > Ni3 [2,4,6-tri(Me)] > Ni4 [2,6-di(Et)-4-Me] > Ni2 [2,6-di(Et)], correlated well with the trend in net charges observed in XPS analysis. The polydispersities (1.7–2.0) obtained for polyethylenes are narrow and indicate genuinely single-site active species for these catalysts. These performance characteristics have been attributed to the influence of the rigid geometry imparted by L1L5 that, due to the presence of 7,7-dimethyl-substituents, prevents imine–enamine tautomerization.

Graphical abstract: Rigid geometry 8-arylimino-7,7-dimethyl-5,6-dihydroquinolyl nickel bromides: single-site active species towards ethylene polymerization

Supplementary files

Article information

Article type
Paper
Submitted
08 Aug 2016
Accepted
19 Sep 2016
First published
19 Sep 2016

New J. Chem., 2016,40, 9329-9336

Rigid geometry 8-arylimino-7,7-dimethyl-5,6-dihydroquinolyl nickel bromides: single-site active species towards ethylene polymerization

C. Huang, Y. Zhang, T. Liang, Z. Zhao, X. Hu and W. Sun, New J. Chem., 2016, 40, 9329 DOI: 10.1039/C6NJ02464E

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements