Jump to main content
Jump to site search

Issue 6, 2016
Previous Article Next Article

Optical phonons in methylammonium lead halide perovskites and implications for charge transport

Author affiliations

Abstract

Lead-halide perovskites are promising materials for opto-electronic applications. Recent reports indicated that their mechanical and electronic properties are strongly affected by the lattice vibrations. Herein we report far-infrared spectroscopy measurements of CH3NH3Pb(I/Br/Cl)3 thin films and single crystals at room temperature and a detailed quantitative analysis of the spectra. We find strong broadening and anharmonicity of the lattice vibrations for all three halide perovskites, which indicates dynamic disorder of the lead-halide cage at room temperature. We determine the frequencies of the transversal and longitudinal optical phonons, and use them to calculate, via appropriate models, the static dielectric constants, polaron masses, electron–phonon coupling constants, and upper limits for the phonon-scattering limited charge carrier mobilities. Within the limitations of the model used, we can place an upper limit of 200 cm2 V−1 s−1 for the room temperature charge carrier mobility in MAPbI3 single crystals. Our findings are important for the basic understanding of charge transport processes and mechanical properties in metal halide perovskites.

Graphical abstract: Optical phonons in methylammonium lead halide perovskites and implications for charge transport

Back to tab navigation

Supplementary files

Publication details

The article was received on 29 Jul 2016, accepted on 07 Oct 2016 and first published on 07 Oct 2016


Article type: Communication
DOI: 10.1039/C6MH00275G
Citation: Mater. Horiz., 2016,3, 613-620
  • Open access: Creative Commons BY license
  •   Request permissions

    Optical phonons in methylammonium lead halide perovskites and implications for charge transport

    M. Sendner, P. K. Nayak, D. A. Egger, S. Beck, C. Müller, B. Epding, W. Kowalsky, L. Kronik, H. J. Snaith, A. Pucci and R. Lovrinčić, Mater. Horiz., 2016, 3, 613
    DOI: 10.1039/C6MH00275G

    This article is licensed under a Creative Commons Attribution 3.0 Unported Licence. Material from this article can be used in other publications provided that the correct acknowledgement is given with the reproduced material.

    Reproduced material should be attributed as follows:

    • For reproduction of material from NJC:
      [Original citation] - Published by The Royal Society of Chemistry (RSC) on behalf of the Centre National de la Recherche Scientifique (CNRS) and the RSC.
    • For reproduction of material from PCCP:
      [Original citation] - Published by the PCCP Owner Societies.
    • For reproduction of material from PPS:
      [Original citation] - Published by The Royal Society of Chemistry (RSC) on behalf of the European Society for Photobiology, the European Photochemistry Association, and RSC.
    • For reproduction of material from all other RSC journals:
      [Original citation] - Published by The Royal Society of Chemistry.

    Information about reproducing material from RSC articles with different licences is available on our Permission Requests page.

Search articles by author

Spotlight

Advertisements