Issue 15, 2016

Standalone ethanol micro-reformer integrated on silicon technology for onboard production of hydrogen-rich gas

Abstract

A novel design of a silicon-based micro-reformer for onboard hydrogen generation from ethanol is presented in this work. The micro-reactor is fully fabricated with mainstream MEMS technology and consists of an active low-thermal-mass structure suspended by an insulating membrane. The suspended structure includes an embedded resistive metal heater and an array of ca. 20k vertically aligned through-silicon micro-channels per square centimetre. Each micro-channel is 500 μm in length and 50 μm in diameter allowing a unique micro-reformer configuration that presents a total surface per projected area of 16 cm2 cm−2 and per volume of 320 cm2 cm−3. The walls of the micro-channels become the active surface of the micro-reformer when coated with a homogenous thin film of Rh–Pd/CeO2 catalyst. The steam reforming of ethanol under controlled temperature conditions (using the embedded heater) and using the micro-reformer as a standalone device are evaluated. Fuel conversion rates above 94% and hydrogen selectivity values of ca. 70% were obtained when using operation conditions suitable for application in micro-solid oxide fuel cells (micro-SOFCs), i.e. 750 °C and fuel flows of 0.02 mlL min−1 (enough to feed a one watt power source).

Graphical abstract: Standalone ethanol micro-reformer integrated on silicon technology for onboard production of hydrogen-rich gas

Supplementary files

Article information

Article type
Paper
Submitted
02 May 2016
Accepted
28 Jun 2016
First published
28 Jun 2016

Lab Chip, 2016,16, 2900-2910

Standalone ethanol micro-reformer integrated on silicon technology for onboard production of hydrogen-rich gas

D. Pla, M. Salleras, A. Morata, I. Garbayo, M. Gerbolés, N. Sabaté, N. J. Divins, A. Casanovas, J. Llorca and A. Tarancón, Lab Chip, 2016, 16, 2900 DOI: 10.1039/C6LC00583G

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements