Jump to main content
Jump to site search

Issue 16, 2016
Previous Article Next Article

A microfluidic flow focusing platform to screen the evolution of crude oil–brine interfacial elasticity

Author affiliations

Abstract

Multiphase fluid flow dynamics dominate processes used to recover the majority of hydrocarbon resources produced by global energy industries. Micromodels have long been used to recapitulate geometric features of these processes, allowing for the phenomenological validation of multiphase porous media transport models. Notably, these platform surrogates typically preserve the complexity of reservoir conditions, preventing the elucidation of underlying physical mechanisms that govern bulk phenomena. Here, we introduce a microfluidic flow focusing platform that allows crude oil to be aged against brines of distinct composition in order to evaluate the pore-level effects of chemically-mediated interfacial properties upon snap-off. Snap-off is a fundamental multiphase flow process that has been shown to be a function of aqueous phase chemistry, which in turn establishes the limits of crude oil recovery during enhanced oil recovery operations. Specifically, this platform was used to evaluate the hypothesis that low salinity brines suppress crude oil snap-off, thus enhancing recovery. This hypothesis was validated and conditions that promote the effect were shown to, unexpectedly, develop over a matter of minutes on the pore scale. Microfluidic snap-off experiments were complemented by finite element fluid dynamics modeling, and further validated against a classical instability framework.

Graphical abstract: A microfluidic flow focusing platform to screen the evolution of crude oil–brine interfacial elasticity

Back to tab navigation
Please wait while Download options loads

Publication details

The article was received on 01 Mar 2016, accepted on 25 May 2016 and first published on 25 May 2016


Article type: Paper
DOI: 10.1039/C6LC00287K
Citation: Lab Chip, 2016,16, 3074-3081
  •   Request permissions

    A microfluidic flow focusing platform to screen the evolution of crude oil–brine interfacial elasticity

    B. Morin, Y. Liu, V. Alvarado and J. Oakey, Lab Chip, 2016, 16, 3074
    DOI: 10.1039/C6LC00287K

Search articles by author