Jump to main content
Jump to site search

Issue 9, 2016
Previous Article Next Article

A 3D printed microfluidic device for production of functionalized hydrogel microcapsules for culture and differentiation of human Neuronal Stem Cells (hNSC)

Author affiliations

Abstract

We present here a microfluidic device that generates sub-millimetric hollow hydrogel spheres, encapsulating cells and coated internally with a layer of reconstituted extracellular matrix (ECM) of a few microns thick. The spherical capsules, composed of alginate hydrogel, originate from the spontaneous instability of a multi-layered jet formed by co-extrusion using a coaxial flow device. We provide a simple design to manufacture this device using a DLP (digital light processing) 3D printer. Then, we demonstrate how the inner wall of the capsules can be decorated with a continuous ECM layer that is anchored to the alginate gel and mimics the basal membrane of a cellular niche. Finally, we used this approach to encapsulate human Neural Stem Cells (hNSC) derived from human Induced Pluripotent Stem Cells (hIPSC), which were further differentiated into neurons within the capsules with negligible loss of viability. Altogether, we show that these capsules may serve as cell micro-containers compatible with complex cell culture conditions and applications. These developments widen the field of research and biomedical applications of the cell encapsulation technology.

Graphical abstract: A 3D printed microfluidic device for production of functionalized hydrogel microcapsules for culture and differentiation of human Neuronal Stem Cells (hNSC)

Back to tab navigation

Supplementary files

Publication details

The article was received on 05 Feb 2016, accepted on 21 Mar 2016 and first published on 21 Mar 2016


Article type: Paper
DOI: 10.1039/C6LC00133E
Author version available: Download Author version (PDF)
Citation: Lab Chip, 2016,16, 1593-1604
  •   Request permissions

    A 3D printed microfluidic device for production of functionalized hydrogel microcapsules for culture and differentiation of human Neuronal Stem Cells (hNSC)

    K. Alessandri, M. Feyeux, B. Gurchenkov, C. Delgado, A. Trushko, K. Krause, D. Vignjević, P. Nassoy and A. Roux, Lab Chip, 2016, 16, 1593
    DOI: 10.1039/C6LC00133E

Search articles by author

Spotlight

Advertisements