Jump to main content
Jump to site search

Issue 23, 2016
Previous Article Next Article

Sustainable iron production from mineral iron carbonate and hydrogen

Author affiliations

Abstract

The reduction of iron ores with hydrogen is considered a promising CO2 breakthrough technology to mitigate CO2 emissions from the iron and steel industry. The state-of-the-art production of iron and steel from mineral iron carbonates (FeCO3) is based on the thermal decomposition of FeCO3 in air to produce hematite (Fe2O3) suitable for iron production. Our approach is to directly reduce FeCO3 with hydrogen to elemental iron, avoiding Fe2O3 formation. As a consequence, CO2 emissions can be decreased by 60% and up to 33% less reducing agent is needed for iron production. The development of environmentally benign production pathways needs to be based on a fundamental understanding of the reaction kinetics and mechanism. Therefore, thermogravimetry was used to determine the kinetics of the formation of iron from mineral iron carbonate and the concomitant decomposition of the accessory matrix carbonates of calcium, magnesium, and manganese. The isoconversional kinetic analysis according to the Ozawa–Flynn–Wall, Kissinger–Akahira–Sunose, and Friedman approach confirms the proposed parallel kinetic model. Multi-variate non-linear regression was used to determine the appropriate kinetic parameters. The conversion of iron carbonate to iron can be described with the two-dimensional Avrami-Erofeev model A2. Therefore, a temperature-controlled nucleation and diffusional growth mechanism is suggested for iron formation from mineral iron carbonate and hydrogen. The multi-parameter reaction models Cn-X and Bna can be used to describe the concomitant iron, calcium oxide, magnesium oxide, and manganese oxide formation without applying multi-step kinetics. The multi-parameter reaction models predict a conversion above 95% at 450 °C within less than 60 minutes reaction time. Unavoidably, 1 mole of carbon dioxide is always emitted when 1 mole of FeCO3 is converted into iron. Catalytic carbon dioxide hydrogenation (CCDH) can be applied to diminish inevitable CO2 emissions by chemical conversion into value-added carbon containing chemicals. Therefore, we propose a process that combines the improved iron production via direct FeCO3 reduction with CCDH as a follow-up reaction.

Graphical abstract: Sustainable iron production from mineral iron carbonate and hydrogen

Back to tab navigation

Publication details

The article was received on 03 Aug 2016, accepted on 11 Oct 2016 and first published on 11 Oct 2016


Article type: Paper
DOI: 10.1039/C6GC02160C
Citation: Green Chem., 2016,18, 6255-6265
  • Open access: Creative Commons BY-NC license
  •   Request permissions

    Sustainable iron production from mineral iron carbonate and hydrogen

    G. Baldauf-Sommerbauer, S. Lux and M. Siebenhofer, Green Chem., 2016, 18, 6255
    DOI: 10.1039/C6GC02160C

    This article is licensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence. Material from this article can be used in other publications provided that the correct acknowledgement is given with the reproduced material and it is not used for commercial purposes.

    Reproduced material should be attributed as follows:

    • For reproduction of material from NJC:
      [Original citation] - Published by The Royal Society of Chemistry (RSC) on behalf of the Centre National de la Recherche Scientifique (CNRS) and the RSC.
    • For reproduction of material from PCCP:
      [Original citation] - Published by the PCCP Owner Societies.
    • For reproduction of material from PPS:
      [Original citation] - Published by The Royal Society of Chemistry (RSC) on behalf of the European Society for Photobiology, the European Photochemistry Association, and RSC.
    • For reproduction of material from all other RSC journals:
      [Original citation] - Published by The Royal Society of Chemistry.

    Information about reproducing material from RSC articles with different licences is available on our Permission Requests page.

Search articles by author

Spotlight

Advertisements