Volume 193, 2016

Evidence for a hopping mechanism in metal|single molecule|metal junctions involving conjugated metal–terpyridyl complexes; potential-dependent conductances of complexes [M(pyterpy)2]2+ (M = Co and Fe; pyterpy = 4′-(pyridin-4-yl)-2,2′:6′,2′′-terpyridine) in ionic liquid

Abstract

Extensive studies of various families of conjugated molecules in metal|molecule|metal junctions suggest that the mechanism of conductance is usually tunnelling for molecular lengths < ca. 4 nm, and that for longer molecules, coherence is lost as a hopping element becomes more significant. In this work we present evidence that, for a family of conjugated, redox-active metal complexes, hopping may be a significant factor for even the shortest molecule studied (ca. 1 nm between contact atoms). The length dependence of conductance for two series of such complexes which differ essentially in the number of conjugated 1,4-C6H4- rings in the structures has been studied, and it is found that the junction conductances vary linearly with molecular length, consistent with a hopping mechanism, whereas there is significant deviation from linearity in plots of log(conductance) vs. length that would be characteristic of tunnelling, and the slopes of the log(conductance)–length plots are much smaller than expected for an oligophenyl system. Moreover, the conductances of molecular junctions involving the redox–active molecules, [M(pyterpy)2]2+/3+ (M = Co, Fe) have been studied as a function of electrochemical potential in ionic liquid electrolyte, and the conductance–overpotential relationship is found to fit well with the Kuznetsov–Ulstrup relationship, which is essentially a hopping description.

Associated articles

Supplementary files

Article information

Article type
Paper
Submitted
15 Apr 2016
Accepted
25 Apr 2016
First published
26 Apr 2016

Faraday Discuss., 2016,193, 113-131

Evidence for a hopping mechanism in metal|single molecule|metal junctions involving conjugated metal–terpyridyl complexes; potential-dependent conductances of complexes [M(pyterpy)2]2+ (M = Co and Fe; pyterpy = 4′-(pyridin-4-yl)-2,2′:6′,2′′-terpyridine) in ionic liquid

S. Chappell, C. Brooke, R. J. Nichols, L. J. Kershaw Cook, M. Halcrow, J. Ulstrup and S. J. Higgins, Faraday Discuss., 2016, 193, 113 DOI: 10.1039/C6FD00080K

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements