Jump to main content
Jump to site search
PLANNED MAINTENANCE Close the message box

Scheduled maintenance upgrade on Thursday 4th of May 2017 from 8.00am to 9.00am (BST).

During this time our websites will be offline temporarily. If you have any questions please use the feedback button on this page. We apologise for any inconvenience this might cause and thank you for your patience.


Issue 12, 2016
Previous Article Next Article

Sulfate formation catalyzed by coal fly ash, mineral dust and iron(III) oxide: variable influence of temperature and light

Author affiliations

Abstract

Recent atmospheric field and modeling studies have highlighted a lack of understanding of the processes responsible for high levels of sulfate aerosol in the atmosphere, ultimately arising from a dearth of experimental data on such processes. Here we investigated the effect of temperature and simulated solar radiation on the catalytic oxidation of S(IV) to S(VI) (i.e., sulfite to sulfate) in aqueous suspensions of several metal-containing, atmospherically relevant particles including coal fly ash (FA), Arizona test dust (ATD) and an iron oxide (γ-Fe2O3). The effect of temperature and light on S(IV) oxidation was found to be very different for these three samples. For example, in the presence of FA and γ-Fe2O3 the temporal evolution of dissolved Fe(II) (formed via reductive particle dissolution) correlated with S(IV) oxidation. Accordingly, we propose that S(IV) oxidation in most of these systems initially occurs primarily at the particle surface (i.e., a heterogeneous reaction pathway), although a solution-phase (i.e., homogeneous) catalytic pathway also contributes over later timescales due to the formation and accumulation of dissolved Fe(III) (generated via oxidation of dissolved Fe(II) by O2). It is likely that the homogeneous reaction pathway is operative at initial times in the presence of γ-Fe2O3 at 25 °C. In contrast, S(IV) oxidation in the presence of ATD appears to proceed entirely via a heterogeneous reaction, which notably does not lead to any iron dissolution. In fact, the greater overall rate of S(IV) loss in the presence of ATD compared to FA and γ-Fe2O3 suggests that other factors, including greater adsorption of sulfite, transition metal ion (TMI) catalysis by other metal ions (e.g., Ti), or different species of iron in ATD, play a role. Overall these studies suggest that the rate, extent and products of atmospheric S(IV) oxidation can be highly variable and dependent upon the nature of aerosol sources and ambient conditions (e.g., temperature and irradiance). Ultimately, such complexity precludes simple, broadly generalized schemes for this reaction when modeling atmospheric processes involving diverse components of different mineral dust aerosol as well as other metal-containing aerosol.

Graphical abstract: Sulfate formation catalyzed by coal fly ash, mineral dust and iron(iii) oxide: variable influence of temperature and light

Back to tab navigation
Please wait while Download options loads

Supplementary files

Publication details

The article was received on 26 Jul 2016, accepted on 13 Oct 2016 and first published on 13 Oct 2016


Article type: Paper
DOI: 10.1039/C6EM00430J
Citation: Environ. Sci.: Processes Impacts, 2016,18, 1484-1491
  • Open access: Creative Commons BY license
  •   Request permissions

    Sulfate formation catalyzed by coal fly ash, mineral dust and iron(III) oxide: variable influence of temperature and light

    A. Gankanda, E. M. Coddens, Y. Zhang, D. M. Cwiertny and V. H. Grassian, Environ. Sci.: Processes Impacts, 2016, 18, 1484
    DOI: 10.1039/C6EM00430J

    This article is licensed under a Creative Commons Attribution 3.0 Unported Licence. Material from this article can be used in other publications provided that the correct acknowledgement is given with the reproduced material.

    Reproduced material should be attributed as follows:

    • For reproduction of material from NJC:
      [Original citation] - Published by The Royal Society of Chemistry (RSC) on behalf of the Centre National de la Recherche Scientifique (CNRS) and the RSC.
    • For reproduction of material from PCCP:
      [Original citation] - Published by the PCCP Owner Societies.
    • For reproduction of material from PPS:
      [Original citation] - Published by The Royal Society of Chemistry (RSC) on behalf of the European Society for Photobiology, the European Photochemistry Association, and RSC.
    • For reproduction of material from all other RSC journals:
      [Original citation] - Published by The Royal Society of Chemistry.

    Information about reproducing material from RSC articles with different licences is available on our Permission Requests page.

Search articles by author