Issue 11, 2016

Efficient vacuum deposited p-i-n and n-i-p perovskite solar cells employing doped charge transport layers

Abstract

Methylammonium lead halide perovskites have emerged as high performance photovoltaic materials. Most of these solar cells are prepared via solution-processing and record efficiencies (>20%) have been obtained employing perovskites with mixed halides and organic cations on (mesoscopic) metal oxides. Here, we demonstrate fully vacuum deposited planar perovskite solar cells by depositing methylammonium lead iodide in between intrinsic and doped organic charge transport molecules. Two configurations, one inverted with respect to the other, p-i-n and n-i-p, are prepared and optimized leading to planar solar cells without hysteresis and very high efficiencies, 16.5% and 20%, respectively. It is the first time that a direct comparison between these two opposite device configurations has been reported. These fully vacuum deposited solar cells, employing doped organic charge transport layers, validate for the first time vacuum based processing as a real alternative for perovskite solar cell preparation.

Graphical abstract: Efficient vacuum deposited p-i-n and n-i-p perovskite solar cells employing doped charge transport layers

Supplementary files

Article information

Article type
Paper
Submitted
20 Jul 2016
Accepted
20 Sep 2016
First published
20 Sep 2016

Energy Environ. Sci., 2016,9, 3456-3463

Efficient vacuum deposited p-i-n and n-i-p perovskite solar cells employing doped charge transport layers

C. Momblona, L. Gil-Escrig, E. Bandiello, E. M. Hutter, M. Sessolo, K. Lederer, J. Blochwitz-Nimoth and H. J. Bolink, Energy Environ. Sci., 2016, 9, 3456 DOI: 10.1039/C6EE02100J

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements