Issue 5, 2016

Comparison of heterogenized molecular and heterogeneous oxide catalysts for photoelectrochemical water oxidation

Abstract

Photoelectrochemical (PEC) reactions, such as water splitting, promise a direct route for solar-to-chemical energy conversion. Successful implementations of these reactions often require the combination of catalysts with photoelectrodes. How these catalysts improve the performance of photoelectrodes, however, is not well understood, making it difficult to further improve these systems for practical applications. Here, we present a systematic study that directly compares two water-oxidation catalysts (WOCs) on a hematite (α-Fe2O3)-based PEC system. We observe that when a thin layer of a heterogenized molecular Ir catalyst (het-WOC) is applied to a hematite photoanode, the system's performance is improved primarily due to improved charge transfer (>2 fold), while the surface recombination rate remains unchanged. In stark contrast, heterogeneous oxide catalysts (IrOx) improve the PEC performance of hematite by significantly reducing the surface recombination rate. These results suggest that the het-WOC provides additional charge-transfer pathways across the Fe2O3|H2O interface, while IrOx and similar bulk metal-oxide catalysts replace the Fe2O3|H2O interface with a fundamentally different one.

Graphical abstract: Comparison of heterogenized molecular and heterogeneous oxide catalysts for photoelectrochemical water oxidation

Supplementary files

Article information

Article type
Paper
Submitted
23 Dec 2015
Accepted
30 Mar 2016
First published
30 Mar 2016

Energy Environ. Sci., 2016,9, 1794-1802

Comparison of heterogenized molecular and heterogeneous oxide catalysts for photoelectrochemical water oxidation

W. Li, D. He, S. W. Sheehan, Y. He, J. E. Thorne, X. Yao, G. W. Brudvig and D. Wang, Energy Environ. Sci., 2016, 9, 1794 DOI: 10.1039/C5EE03871E

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements