Jump to main content
Jump to site search

Issue 3, 2016
Previous Article Next Article

Design of anaerobic membrane bioreactors for the valorization of dilute organic carbon waste streams

Author affiliations

Abstract

Aqueous waste organics are an abundant resource generated continuously by industry and human metabolism. Despite its high energy content, organic carbon is typically degraded to CO2 through energy-intensive processes due to its heterogeneity, its low concentration, and stringent requirements for effluent quality. However, valorizing waste organics alongside recovered water is critical for the viability of utilities, industry, and next generation biorefineries. To that end, we employ a quantitative sustainable design (QSD) methodology to set a research agenda for the development of anaerobic membrane bioreactors (AnMBRs) for the conversion of dilute, aqueous organic carbon into methane-rich biogas, with the simultaneous recovery of quality water. 150 unique AnMBR configurations were assembled as the landscape of possible development pathways. Each configuration was evaluated by integrating full-scale design and operation with techno-economic analysis (TEA) and life cycle assessment (LCA) in a Monte Carlo framework. Costs and environmental impacts were most sensitive to membrane configuration, membrane type, and inclusion of granular activated carbon (GAC) as physical media for membrane scouring. The least expensive designs (20th percentile) were exclusively AnMBRs with cross-flow, multi-tube membranes. Research targets were set through sensitivity analyses, prioritizing a decrease in cross-flow velocity (<0.5 m s−1), elimination of gas sparging, increase in membrane life (>10 years), decrease in upflow velocity for physical media bed expansion (<7.5 m h−1), and the development of low-cost physical media for fouling mitigation. Lastly, a subset of AnMBR designs had costs below state-of-the-art treatment (high rate activated sludge with anaerobic digestion), demonstrating the valorization of waste organics would be financially advantageous to industry and utilities.

Graphical abstract: Design of anaerobic membrane bioreactors for the valorization of dilute organic carbon waste streams

Back to tab navigation

Supplementary files

Publication details

The article was received on 09 Dec 2015, accepted on 18 Jan 2016 and first published on 18 Jan 2016


Article type: Paper
DOI: 10.1039/C5EE03715H
Citation: Energy Environ. Sci., 2016,9, 1102-1112
  • Open access: Creative Commons BY-NC license
  •   Request permissions

    Design of anaerobic membrane bioreactors for the valorization of dilute organic carbon waste streams

    B. D. Shoener, C. Zhong, A. D. Greiner, W. O. Khunjar, P. Hong and J. S. Guest, Energy Environ. Sci., 2016, 9, 1102
    DOI: 10.1039/C5EE03715H

    This article is licensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence. Material from this article can be used in other publications provided that the correct acknowledgement is given with the reproduced material and it is not used for commercial purposes.

    Reproduced material should be attributed as follows:

    • For reproduction of material from NJC:
      [Original citation] - Published by The Royal Society of Chemistry (RSC) on behalf of the Centre National de la Recherche Scientifique (CNRS) and the RSC.
    • For reproduction of material from PCCP:
      [Original citation] - Published by the PCCP Owner Societies.
    • For reproduction of material from PPS:
      [Original citation] - Published by The Royal Society of Chemistry (RSC) on behalf of the European Society for Photobiology, the European Photochemistry Association, and RSC.
    • For reproduction of material from all other RSC journals:
      [Original citation] - Published by The Royal Society of Chemistry.

    Information about reproducing material from RSC articles with different licences is available on our Permission Requests page.

Search articles by author

Spotlight

Advertisements