Jump to main content
Jump to site search

Issue 47, 2016
Previous Article Next Article

Platinum(0)-mediated C–O bond activation of ethers via an SN2 mechanism

Author affiliations

Abstract

A computational study of the C(methyl)–O bond activation of fluorinated aryl methyl ethers by a platinum(0) complex Pt(PCyp3)2 (Cyp = cyclopentyl) (N. A. Jasim, R. N. Perutz, B. Procacci and A. C. Whitwood, Chem. Commun., 2014, 50, 3914) demonstrates that the reaction proceeds via an SN2 mechanism. Nucleophilic attack of Pt(0) generates an ion pair consisting of a T-shaped platinum cation with an agostic interaction with a cyclopentyl group and a fluoroaryloxy anion. This ion-pair is converted to a 4-coordinate Pt(II) product trans-[PtMe(OArF)(PCyp3)2]. Structure-reactivity correlations are fully consistent with this mechanism. The Gibbs energy of activation is calculated to be substantially higher for aryl methyl ethers without fluorine substituents and higher still for alkyl methyl ethers. These conclusions are in accord with the experimental results. Further support was obtained in an experimental study of the reaction of Pt(PCy3)2 with 2,3,5,6-tetrafluoro-4-allyloxypyridine yielding the salt of the Pt(η3-allyl) cation and the tetrafluoropyridinolate anion [Pt(PCy3)23-allyl)][OC5NF4]. The calculated activation energy for this reaction is significantly lower than that for fluorinated aryl methyl ethers.

Graphical abstract: Platinum(0)-mediated C–O bond activation of ethers via an SN2 mechanism

Back to tab navigation

Supplementary files

Publication details

The article was received on 16 Aug 2016, accepted on 06 Oct 2016 and first published on 07 Oct 2016


Article type: Paper
DOI: 10.1039/C6DT03241A
Citation: Dalton Trans., 2016,45, 18842-18850
  •   Request permissions

    Platinum(0)-mediated C–O bond activation of ethers via an SN2 mechanism

    M. A. Ortuño, N. A. Jasim, A. C. Whitwood, A. Lledós and R. N. Perutz, Dalton Trans., 2016, 45, 18842
    DOI: 10.1039/C6DT03241A

Search articles by author

Spotlight

Advertisements