Issue 26, 2016

Topoisomerase IIα poisoning and DNA double-strand breaking by chiral ruthenium(ii) complexes containing 2-furanyl-imidazo[4,5-f][1,10]phenanthroline derivatives

Abstract

Four chiral Ru(II) complexes bearing furan ligands, Δ/Λ-[Ru(bpy)2(pocl)]2+ (Δ/Λ-1) and Δ/Λ-[Ru(bpy)2(poi)]2+ (Δ/Λ-2) (bpy = 2,2′-bipyridine, pocl = 2-(5-chlorofuran-2-yl)imidazo[4,5-f][1,10]phenanthroline, poi = 2-(5-5-iodofuran-2-yl)imidazo[4,5-f][1,10]phenanthroline), were synthesized and characterized. These Ru(II) complexes showed antitumor activities against HeLa, A549, HepG2, HL-60 and K562 tumor cell lines, especially the HL-60 tumor cell line. Moreover, Δ-2 was more active than other complexes accounting for the different cellular uptakes. In addition, Δ-2 could accumulate in the nucleus of HL-60 cells, suggesting that nucleic acids were the cellular target of Δ-2. Topoisomerase inhibition tests in vitro and in living cells confirmed that the four complexes acted as efficient topoisomerase IIα poisons, DNA double-strand breaks had also been observed from neutral single cell gel electrophoresis (comet assay). Δ-2 inhibited the growth of HL-60 cells through the induction of apoptotic cell death, as evidenced by the Alexa Fluor® 488 annexin V staining assays. The results demonstrated that Δ-2 acted as a topoisomerase IIα poison and caused DNA double-strand damage that could lead to apoptosis.

Graphical abstract: Topoisomerase IIα poisoning and DNA double-strand breaking by chiral ruthenium(ii) complexes containing 2-furanyl-imidazo[4,5-f][1,10]phenanthroline derivatives

Article information

Article type
Paper
Submitted
13 Apr 2016
Accepted
13 May 2016
First published
13 May 2016

Dalton Trans., 2016,45, 10546-10555

Topoisomerase IIα poisoning and DNA double-strand breaking by chiral ruthenium(II) complexes containing 2-furanyl-imidazo[4,5-f][1,10]phenanthroline derivatives

C. Qian, J. Wu, L. Ji and H. Chao, Dalton Trans., 2016, 45, 10546 DOI: 10.1039/C6DT01422D

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements