Issue 7, 2016

Coinage metal coordination chemistry of stable primary, secondary and tertiary ferrocenylethyl-based phosphines

Abstract

Ferrocene-based phosphines constitute an important auxiliary ligand in inorganic chemistry. Utilizing the (ferrocenylethyl)phosphines (FcCH2CH2)3−nHnP (Fc = ferrocenyl; n = 2, 1; n = 1, 2; n = 0, 3) the synthesis of a series of coordination complexes [(FcCH2CH2)3−nHnPCuCl]4 (n = 2, 1-CuCl; n = 0, 3-CuCl), [(FcCH2CH2)2HPCuCl] (2-CuCl), {[(FcCH2CH2)H2P]2AgCl}2 (1-AgCl), [(FcCH2CH2)2HPAgCl] (2-AgCl), [(FcCH2CH2)3PAgCl]4 (3-AgCl), [(FcCH2CH2)3PM(OAc)]4 (M = Cu, 3-CuOAc M = Ag, 3-AgOAc), [(FcCH2CH2)3−nHnPAuCl] (n = 1, 2-AuCl; n = 0, 3-AuCl), via the reaction between the free phosphine and MX (M = Cu, Ag and Au; X = Cl, OAc), is described. The reaction between the respective phosphine with a suspension of metal–chloride or -acetate in a 1 : 1 ratio in THF at ambient temperature affords coordinated phosphine-coinage metal complexes. Varying structural motifs are observed in the solid state, as determined via single crystal X-ray analysis of 1-CuCl, 3-CuCl, 1-AgCl, 3-AgCl, 3-CuOAc, 3-AgOAc, 2-AuCl and 3-AuCl. Complexes 1-CuCl and 3-CuCl are tetrameric Cu(I) cubane-like structures with a Cu4Cl4 core, whereas silver complexes with primary and tertiary phosphine reveal two different structural types. The structure of 1-AgCl, unlike the rest, displays the coordination of two phosphines to each silver atom and shows a quadrangle defined by two Ag and two Cl atoms. In contrast, 3-AgCl is distorted from a cubane structure via elongation of one of the Cl⋯Ag distances. 3-CuOAc and 3-AgOAc are isostructural with step-like cores, while complexes 2-AuCl and 3-AuCl reveal a linear geometry of a phosphine gold(I) chloride devoid of any aurophilic interactions. All of the complexes were characterized in solution by multinuclear 1H, 13C{1H} and 31P NMR spectroscopic techniques; the redox chemistry of the series of complexes was examined using cyclic voltammetry. This class of complexes has been found to exhibit one reversible Fe(II)/Fe(III) oxidation couple, suggesting the absence of electronic communication between the ferrocenyl units on individual phosphine ligands as well as between different phosphines on the polymetallic cores.

Graphical abstract: Coinage metal coordination chemistry of stable primary, secondary and tertiary ferrocenylethyl-based phosphines

Supplementary files

Article information

Article type
Paper
Submitted
09 Oct 2015
Accepted
05 Jan 2016
First published
21 Jan 2016

Dalton Trans., 2016,45, 2868-2880

Author version available

Coinage metal coordination chemistry of stable primary, secondary and tertiary ferrocenylethyl-based phosphines

M. Azizpoor Fard, A. Rabiee Kenaree, P. D. Boyle, P. J. Ragogna, J. B. Gilroy and J. F. Corrigan, Dalton Trans., 2016, 45, 2868 DOI: 10.1039/C5DT03962B

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements