Issue 2, 2016

Controlling the molecular weights of polyethylene waxes using the highly active precatalysts of 2-(1-aryliminoethyl)-9-arylimino-5,6,7,8-tetrahydrocycloheptapyridylcobalt chlorides: synthesis, characterization, and catalytic behavior

Abstract

A series of 2-(1-aryliminoethyl)-9-arylimino-5,6,7,8-tetrahydrocycloheptapyridylcobalt chlorides were synthesized and characterized using FT-IR and elemental analysis, and the molecular structures of complexes Co1, Co3 and Co4 were confirmed to present a pseudo-square-pyramidal or trigonal-bipyramidal geometry around the cobalt center using single-crystal X-ray diffraction. Upon activation with either methylaluminoxane (MAO) or modified methylaluminoxane (MMAO), all cobalt precatalysts gave high activities up to the level of 107 gPE mol−1 (Co) h−1 toward ethylene polymerization, being one of most active cobalt-based precatalysts. In comparison with cobalt analogues, the title precatalysts generally possessed longer lifetime along with good thermo-stability; moreover, the resultant polyethylenes were highly linear and unimodal in most cases.

Graphical abstract: Controlling the molecular weights of polyethylene waxes using the highly active precatalysts of 2-(1-aryliminoethyl)-9-arylimino-5,6,7,8-tetrahydrocycloheptapyridylcobalt chlorides: synthesis, characterization, and catalytic behavior

Supplementary files

Article information

Article type
Paper
Submitted
27 Sep 2015
Accepted
13 Nov 2015
First published
13 Nov 2015

Dalton Trans., 2016,45, 657-666

Author version available

Controlling the molecular weights of polyethylene waxes using the highly active precatalysts of 2-(1-aryliminoethyl)-9-arylimino-5,6,7,8-tetrahydrocycloheptapyridylcobalt chlorides: synthesis, characterization, and catalytic behavior

F. Huang, W. Zhang, E. Yue, T. Liang, X. Hu and W. Sun, Dalton Trans., 2016, 45, 657 DOI: 10.1039/C5DT03779D

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements