Issue 11, 2016

Highly active and durable Pd/Fe2O3 catalysts for wet CO oxidation under ambient conditions

Abstract

Pd/Fe2O3(FeOOH) catalysts were prepared in different ways: T – traditional incipient wetness impregnation (IWI) from a solution of palladium nitrate, D – modification of the support surface by dimethylformamide (DMF) prior to IWI, and DF – variant D followed by treatment with a sodium formate solution. These catalysts have been tested for CO oxidation under isothermal conditions at 20 °C in the presence and absence of water vapor and characterized by XRD, TEM, XPS, H2-reduction and adsorption methods. The Pd(T)/Fe2O3 catalyst is highly active in CO oxidation at room temperature under “dry” conditions but is deactivated in the presence of water vapor. The Pd(D)/Fe2O3 catalyst is inactive in low-temperature CO oxidation, whereas Pd(DF)/Fe2O3(FeOOH) catalysts are characterized by high activity at room temperature and ambient humidity. The main state of palladium in the Pd(T)/Fe2O3 catalyst without pretreatment with DMF is in nitrate complexes, where it can be readily reduced to form clusters ∼1.5 nm in size. In the case of Pd(D)/Fe2O3, palladium interacts with dimethylformamide forming complexes which cannot be reduced by hydrogen at room temperature. It is proposed that palladium clusters are located within the interdomain boundaries of the hydrophobic support in (0.5–1.0)% Pd(DF)/Fe2O3 active catalysts. These (0.5–1.0)% Pd(DF)/Fe2O3 catalysts were active towards CO oxidation at ambient temperature and humidity for several hours.

Graphical abstract: Highly active and durable Pd/Fe2O3 catalysts for wet CO oxidation under ambient conditions

Supplementary files

Article information

Article type
Paper
Submitted
21 Sep 2015
Accepted
23 Dec 2015
First published
28 Dec 2015

Catal. Sci. Technol., 2016,6, 3918-3928

Author version available

Highly active and durable Pd/Fe2O3 catalysts for wet CO oxidation under ambient conditions

A. S. Ivanova, E. M. Slavinskaya, O. A. Stonkus, R. V. Gulyaev, T. S. Glazneva, A. S. Noskov and A. I. Boronin, Catal. Sci. Technol., 2016, 6, 3918 DOI: 10.1039/C5CY01588J

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements