Issue 43, 2016

Photochemical recovery of europium from non-aqueous solutions

Abstract

The photochemical recovery of europium from non-aqueous media, more specifically alcohols, is studied. The recovery was performed by photochemical reduction of europium(III) to europium(II) and subsequent removal as the insoluble EuCl2. Two charge transfer bands are present in the UV-C region, one originating from the alcohol (around 230 nm) and the other from the chloride anion (at 271 nm), which are responsible for the photochemical reduction when the solution is illuminated by a medium-pressure mercury lamp. When using different alcohol solvents, a trend is observed with regards to the removal rate and efficiency, following methanol (MeOH) < ethanol (EtOH) < isopropanol (IPA) <50/50 v/v ethanol/isopropanol (EtOH/IPA). This trend can be explained by the solubility of EuCl2 in the different solvents, and by the photon absorption at the wavelengths which provoke the reduction. In a 50/50 v/v EtOH/IPA solution, it is observed that addition of chloride ions (as LiCl) intensifies the chloride-to-europium(III) CT band, effectively increasing the photon absorption in the 260–340 nm wavelength region. Moreover, addition of extra chloride ions decreases the solubility of EuCl2, which in turn accounts for a better recovery efficiency. However, this beneficial effect disappears when the water content rises above 1.5 wt%. For an EtOH/IPA solution with a high chloride concentration and low water content, it is feasible to recover europium from binary europium/yttrium mixtures with an efficiency of up to 94.7% and a purity of 96.7–99.8%, depending on the Eu/Y molar ratio. For higher yttrium excess, the removal rate of europium is higher, which is explained by the ability of yttrium to coordinate water molecules, decreasing the free water content in the solution. The fact that a large excess of yttrium does not compromise the removal rate of europium from the solution, proves that this technique has potential for europium recovery from red lamp phosphors (Y2O3:Eu3+), which consist entirely of europium and yttrium with a Eu/Y molar ratio of 1/20–1/30.

Graphical abstract: Photochemical recovery of europium from non-aqueous solutions

Article information

Article type
Paper
Submitted
14 Sep 2016
Accepted
17 Oct 2016
First published
17 Oct 2016
This article is Open Access
Creative Commons BY-NC license

Phys. Chem. Chem. Phys., 2016,18, 29961-29968

Photochemical recovery of europium from non-aqueous solutions

B. Van den Bogaert, L. Gheeraert, M. E. Leblebici, K. Binnemans and T. Van Gerven, Phys. Chem. Chem. Phys., 2016, 18, 29961 DOI: 10.1039/C6CP06329B

This article is licensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence. You can use material from this article in other publications, without requesting further permission from the RSC, provided that the correct acknowledgement is given and it is not used for commercial purposes.

To request permission to reproduce material from this article in a commercial publication, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party commercial publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements