Issue 47, 2016

Highly stable silica-coated gold nanorods dimers for solution-based SERS

Abstract

The controlled assembly of anisotropic plasmonic nanoparticles (NPs) into highly SERS-active substrates remains particularly challenging for the production of long-term stable NP assemblies in suspension. In this work, we report a simple and efficient strategy to assemble gold nanorods (AuNRs) into dimers. The pH-dependent assembly was triggered using the bifunctional molecular linker BPE (1,2-bis(4-pyridyl)ethylene) and quenched with silver nitrate. The resulting AuNR dimers were encapsulated in mesoporous silica shell and proved to be stable in water for at least 5 months. Taking advantage of the large Raman scattering cross-section of the linker BPE, we conducted a detailed study of the enhancement ability of these NR dimers using solution-based surface enhanced Raman scattering (SERS). Both experimental (SERS) and theoretical (discrete dipole approximation) studies of the near-field characteristics revealed a two-orders of magnitude increase of the SERS enhancement factor for the dimers as compared to isolated AuNRs. Besides thermal and colloidal stability, mesoporous silica coating of AuNRs imparts other notable advantages due to its porosity and biocompatibility, which make these core–shell plasmonic platforms promising for future bio-applications.

Graphical abstract: Highly stable silica-coated gold nanorods dimers for solution-based SERS

Supplementary files

Article information

Article type
Paper
Submitted
08 Sep 2016
Accepted
16 Oct 2016
First published
19 Oct 2016

Phys. Chem. Chem. Phys., 2016,18, 32272-32280

Highly stable silica-coated gold nanorods dimers for solution-based SERS

I. Haidar, G. Lévi, L. Mouton, J. Aubard, J. Grand, S. Lau-Truong, D. R. Neuville, N. Félidj and L. Boubekeur-Lecaque, Phys. Chem. Chem. Phys., 2016, 18, 32272 DOI: 10.1039/C6CP06218K

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements