Issue 46, 2016

A highly efficient g-C3N4/SiO2 heterojunction: the role of SiO2 in the enhancement of visible light photocatalytic activity

Abstract

SiO2, an insulator, hardly has any photocatalytic acitivity due to its intrinsic property, and it is generally used as a hard template to increase the surface area of catalysts. However, in this work, we found that the surface state of the insulator SiO2 can promote the migration of photogenerated charge carriers, leading to the enhancement of the photooxidation ability of graphitic carbon nitride (g-C3N4). A one-pot calcination method was employed to prepare g-C3N4/SiO2 composites using melamine and SiO2 as precursors. The composites present considerably high photocatalytic degradation activities for 2,4-dichlorophenol (2,4-DCP) and rhodamine B (RhB) under visible light (λ > 420 nm) irradiation, which are about 1.53 and 4.18 times as high as those of bulk g-C3N4, respectively. The enhancement of the photocatalytic activity is due to the fact that the introduction of the insulator SiO2 in g-C3N4/SiO2 composites can greatly improve the specific surface area of the composites; more importantly, the impurity energy level of SiO2 can help accelerate the separation and transfer of electron–hole pairs of g-C3N4. Electron paramagnetic resonance (EPR) spectroscopy and trapping experiments with different radical scavengers show that the main active species of g-C3N4 are superoxide radicals, while holes also play a role in photodegradation. For g-C3N4/SiO2-5, besides superoxide radicals and holes, the effect of hydroxyl radicals was greatly improved. Finally, a possible mechanism for the photogenerated charge carrier migration of the g-C3N4/SiO2 photocatalyst was proposed.

Graphical abstract: A highly efficient g-C3N4/SiO2 heterojunction: the role of SiO2 in the enhancement of visible light photocatalytic activity

Supplementary files

Article information

Article type
Paper
Submitted
05 Sep 2016
Accepted
28 Sep 2016
First published
30 Sep 2016

Phys. Chem. Chem. Phys., 2016,18, 31410-31418

A highly efficient g-C3N4/SiO2 heterojunction: the role of SiO2 in the enhancement of visible light photocatalytic activity

Q. Hao, X. Niu, C. Nie, S. Hao, W. Zou, J. Ge, D. Chen and W. Yao, Phys. Chem. Chem. Phys., 2016, 18, 31410 DOI: 10.1039/C6CP06122B

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements