Jump to main content
Jump to site search

Issue 46, 2016
Previous Article Next Article

Photocatalytic oxidation of methane over SrCO3 decorated SrTiO3 nanocatalysts via a synergistic effect

Author affiliations

Abstract

Because of the high C–H bond energy as well as the non-polar feature of CH4 molecules, oxidation of methane under mild conditions remains a challenging task for both C1 utilization and atmospheric environmental cleansing. Here we report that by using a sol–gel method SrCO3 decorated SrTiO3 nanocatalysts (SrTiO3-S) with an average particle size of ∼25 nm can be readily prepared, which surprisingly show efficient performance for photocatalytic oxidation of methane with the activity close to fourfold of P25, a benchmark photocatalyst. Further investigation revealed a synergistic effect between SrCO3 and SrTiO3 when combined together into a composite material as both of which are totally inactive for methane oxidation if used alone. Gas adsorption characterization disclosed that the SrCO3 can adsorb methane and cannot adsorb carbon dioxide, whereas the SrTiO3 will preferentially adsorb CO2 instead of CH4. Photocurrent and photoluminescence measurements indicate that SrCO3 exhibits a negligible photocurrent response relative to the SrTiO3 semiconductor under simulated solar light illumination but the formation of the SrCO3/SrTiO3 junction structure (SrTiO3-S) helps reduce surface recombination of the photogenerated electrons and holes. All these results refer to the synergistic mechanism in which the SrCO3 acts as a trapping agent to adsorb methane and weaken its C–H bond while the SrTiO3 acts as a photocatalyst to activate and oxidize methane under light illumination. The underlying photooxidation mechanism is further investigated with the aid of in situ electron paramagnetic resonance and infrared spectroscopy.

Graphical abstract: Photocatalytic oxidation of methane over SrCO3 decorated SrTiO3 nanocatalysts via a synergistic effect

Back to tab navigation
Please wait while Download options loads

Supplementary files

Publication details

The article was received on 01 Jul 2016, accepted on 01 Sep 2016 and first published on 01 Sep 2016


Article type: Paper
DOI: 10.1039/C6CP04604E
Citation: Phys. Chem. Chem. Phys., 2016,18, 31400-31409
  •   Request permissions

    Photocatalytic oxidation of methane over SrCO3 decorated SrTiO3 nanocatalysts via a synergistic effect

    X. Pan, X. Chen and Z. Yi, Phys. Chem. Chem. Phys., 2016, 18, 31400
    DOI: 10.1039/C6CP04604E

Search articles by author