Jump to main content
Jump to site search

Issue 17, 2016
Previous Article Next Article

Heteroleptic Ru(II)-bipyridine complexes based on hexylthioether-, hexyloxy- and hexyl-substituted thienylenevinylenes and their application in dye-sensitized solar cells

Author affiliations

Abstract

A series of eight Ru(II) heteroleptic complexes incorporating an ancillary [2,2′]bipyridine functionalised at the [4,4′] positions with one (M-type) or two (B-type) thienylenevinylenes (nTVs, n = 2 or 4) is reported. Three types of substitutions have been used for nTVs: hexylthioether, hexyloxy and hexyl. The characterisation of the half-sandwich intermediates and final complexes is provided. In particular, the half-sandwich complexes in the M-type series are obtained as a racemate, whereas the heteroleptic complexes consist of two regioisomers. Finally, these complexes have been tested as dyes in dye-sensitized solar cells (DSSCs). Counterintuitively, better performances were obtained for M-type complexes with shorter 2TV moieties. The best performing dye was the Ru(II) complex mono-functionalized with a 2TV moiety having an hexylthioether substitution (M2S), which achieved a maximum power efficiency of 2.77% under full sun illumination (AM1.5G standard conditions). The structure–performance relationship in DSSCs is discussed based on photovoltaic and electrochemical data and DFT-calculations.

Graphical abstract: Heteroleptic Ru(ii)-bipyridine complexes based on hexylthioether-, hexyloxy- and hexyl-substituted thienylenevinylenes and their application in dye-sensitized solar cells

Back to tab navigation

Supplementary files

Publication details

The article was received on 15 Dec 2015, accepted on 10 Feb 2016 and first published on 15 Feb 2016


Article type: Paper
DOI: 10.1039/C5CP07753B
Citation: Phys. Chem. Chem. Phys., 2016,18, 11901-11908
  •   Request permissions

    Heteroleptic Ru(II)-bipyridine complexes based on hexylthioether-, hexyloxy- and hexyl-substituted thienylenevinylenes and their application in dye-sensitized solar cells

    M. Urbani, M. Sánchez Carballo, S. A. Kumar, P. Vázquez, M. Grätzel, M. Khaja Nazeeruddin, F. Langa and T. Torres, Phys. Chem. Chem. Phys., 2016, 18, 11901
    DOI: 10.1039/C5CP07753B

Search articles by author

Spotlight

Advertisements