Jump to main content
Jump to site search

Issue 43, 2016
Previous Article Next Article

Stability and particle size control of self-assembled cadmium–aluminum layered double hydroxide

Author affiliations

Abstract

We use the reaction–diffusion framework (RDF) to study the kinetics of formation of hierarchical microstructures of cadmium–aluminum layered double hydroxide (CdAlCl LDH), its particle size distribution, and its polymorphic transformation to brucite-like cadmium hydroxide (β-Cd(OH)2). The system exhibits the evolution of two successive bands separated by a sharp interface, a leading one that constitutes the yellow CdAlCl LDH followed by the white brucite band. We show that by using the RDF we can manipulate the size distribution of the particles within the LDH band along the tubular reactor. The spatiotemporal dynamics of these bands provides a simple means to study the kinetics of formation of the LDH and its polymorphic transformation as a function of the cationic ratio, hence predicting its stability. Consequently, the relative rate constants and the Avrami exponents are calculated and are shown to exhibit a linear correlation with the cationic ratio. The collapse of the LDH microstructures into nano-spheroids of β-Cd(OH)2 is visualized using scanning electron microscopy at the LDH–brucite interface.

Graphical abstract: Stability and particle size control of self-assembled cadmium–aluminum layered double hydroxide

Back to tab navigation
Please wait while Download options loads

Supplementary files

Publication details

The article was received on 19 Sep 2016, accepted on 30 Sep 2016 and first published on 30 Sep 2016


Article type: Paper
DOI: 10.1039/C6CE02017H
Citation: CrystEngComm, 2016,18, 8445-8453
  •   Request permissions

    Stability and particle size control of self-assembled cadmium–aluminum layered double hydroxide

    D. Saliba and M. Al-Ghoul, CrystEngComm, 2016, 18, 8445
    DOI: 10.1039/C6CE02017H

Search articles by author