Issue 32, 2016

Formation of reworkable nanocomposite adhesives by dielectric heating of epoxy resin embedded Fe3O4 hollow spheres

Abstract

Epoxy resin (ER) thermosetting adhesives provide highly cross-linked 3-dimensional structures leading to highly stable and strong mechanical/physical performance in a wide range of bonding applications. However, such excellent physical attributes pose a significant challenge with respect to disassembly of the bonded adherends and previous disassembly methods have resulted in damage to the adherends. Hence, this paper presents a specifically engineered re-workable nanocomposite adhesive, created by embedding dielectric sensitive Fe3O4 hollow nanospheres (HNSs) in epoxy resin. This nanocomposite adhesive can be completely degraded by dielectric heating, resulting in facile disassembly of bonded adherends. FESEM and 3D Micro-CT characterisation demonstrates good dispersibility of the HNSs in cured ER, while the dielectric degradation performance and hardness/modulus were investigated by FESEM and nanoindentation. Results show that the Fe3O4 HNSs can effectively convert the microwave energy into thermal energy to significantly degrade the mechanical properties of the adhesive modulus and hardness by 83.4% and 90%, respectively. FESEM and HRTEM imaging attributes the reduction in nanocomposite adhesive properties to the formation of spatial voids nucleating from the embedded nanomaterials. Prior to dielectric heating, tensile loaded single lap-shear bonded joint tests indicated that the nanocomposite adhesive was 19.3% stronger than its neat ER adhesive counterpart due a nano-reinforcement toughening mechanism. However, after 3 minutes of dielectric heating exposure, the nanocomposite adhesive joint strength was reduced by 96.3% compared to just 18.7% for the neat ER adhesive, demonstrating the excellent re-workable performance of our new nanocomposite adhesive.

Graphical abstract: Formation of reworkable nanocomposite adhesives by dielectric heating of epoxy resin embedded Fe3O4 hollow spheres

Supplementary files

Article information

Article type
Paper
Submitted
13 Jun 2016
Accepted
26 Jul 2016
First published
26 Jul 2016
This article is Open Access
Creative Commons BY-NC license

CrystEngComm, 2016,18, 6096-6101

Formation of reworkable nanocomposite adhesives by dielectric heating of epoxy resin embedded Fe3O4 hollow spheres

B. Zhao, M. Hardiman, K. M. Ryan, E. O'Reilly and C. McCarthy, CrystEngComm, 2016, 18, 6096 DOI: 10.1039/C6CE01359G

This article is licensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence. You can use material from this article in other publications, without requesting further permission from the RSC, provided that the correct acknowledgement is given and it is not used for commercial purposes.

To request permission to reproduce material from this article in a commercial publication, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party commercial publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements