Issue 26, 2016

pH-dependent formation of different coordination cages based on Co4-TC4A secondary building units and bridging ligands

Abstract

Two kinds of calixarene-based metal–organic coordination cages were obtained at different pH values despite using the same bridging ligand, either 5-(pyridin-3-yl)isophthalic acid (L1) or 5-(5-fluoropyridin-3-yl)isophthalic acid (L2), namely, {[Co4(TC4A)Cl]4(Ln)4(HCOO)4(H2O)4]}·26DMF (CIAC-117 and CIAC-119) and H4{[Co4(TC4A)Cl]4(Ln)8}·18CH3OH·33DMA (CIAC-118 and CIAC-120), where TC4A represents deprotonated p-tert-butylthiacalix[4]arene, and DMF and DMA represent N,N-dimethylformamide and N,N-dimethylacetamide, respectively. Tetrahedral coordination cages (CIAC-117 and CIAC-119) with shuttlecock-like Co4-TC4A secondary building units (SBUs) as the vertices and L1 and L2 as the three-connected linkers were prepared in the presence of tetramethylammonium hydroxide, while truncated octahedral coordination cages (CIAC-118 and CIAC-120) with L1 and L2 as the two-connected linkers were generated upon the addition of HCl. For CIAC-117, two types of activation methods, solvent exchange-heating and direct heating, were used to investigate the removal of guest molecules in the structure. N2 adsorption properties of activated samples were studied. Moreover, selective dye sorption of CIAC-120 was investigated.

Graphical abstract: pH-dependent formation of different coordination cages based on Co4-TC4A secondary building units and bridging ligands

Supplementary files

Article information

Article type
Paper
Submitted
06 Jan 2016
Accepted
28 Jan 2016
First published
01 Feb 2016

CrystEngComm, 2016,18, 4938-4943

pH-dependent formation of different coordination cages based on Co4-TC4A secondary building units and bridging ligands

X. Hang, S. Wang, X. Zhu, H. Han and W. Liao, CrystEngComm, 2016, 18, 4938 DOI: 10.1039/C6CE00028B

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements