Issue 3, 2016

LAPONITE®-stabilized iron oxide nanoparticles for in vivo MR imaging of tumors

Abstract

We report the synthesis, characterization and utilization of LAPONITE®-stabilized magnetic iron oxide nanoparticles (LAP-Fe3O4 NPs) as a high performance contrast agent for in vivo magnetic resonance (MR) detection of tumors. In this study, Fe3O4 NPs were synthesized by a facile controlled coprecipitation route in LAP solution, and the formed LAP-Fe3O4 NPs have great colloidal stability and about 2-fold increase of T2 relaxivity than Fe3O4 NPs (from 247.6 mM−1 s−1 to 475.9 mM−1 s−1). Moreover, cytotoxicity assay and cell morphology observation demonstrate that LAP-Fe3O4 NPs display good biocompatibility in the given Fe concentration range, and in vivo biodistribution results prove that NPs can be metabolized and cleared out of the body. Most importantly, LAP-Fe3O4 NPs can not only be used as a contrast agent for MR imaging of cancer cells in vitro due to the effective uptake by tumor cells, but also significantly enhance the contrast of a xenografted tumor model. Therefore, the developed LAP-based Fe3O4 NPs with good colloidal stability and exceptionally high transverse relaxivity may have tremendous potential in MR imaging applications.

Graphical abstract: LAPONITE®-stabilized iron oxide nanoparticles for in vivo MR imaging of tumors

Supplementary files

Article information

Article type
Paper
Submitted
05 Nov 2015
Accepted
11 Dec 2015
First published
05 Jan 2016

Biomater. Sci., 2016,4, 474-482

Author version available

LAPONITE®-stabilized iron oxide nanoparticles for in vivo MR imaging of tumors

L. Ding, Y. Hu, Y. Luo, J. Zhu, Y. Wu, Z. Yu, X. Cao, C. Peng, X. Shi and R. Guo, Biomater. Sci., 2016, 4, 474 DOI: 10.1039/C5BM00508F

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements