Jump to main content
Jump to site search

Issue 23, 2016
Previous Article Next Article

Accurate quantification of apoptosis progression and toxicity using a dielectrophoretic approach

Author affiliations

Abstract

A loss of ability of cells to undergo apoptosis (programmed cell death, whereby the cell ceases to function and destroys itself) is commonly associated with cancer, and many anti-cancer interventions aim to restart the process. Consequently, the accurate quantification of apoptosis is essential in understanding the function and performance of new anti-cancer drugs. Dielectrophoresis has previously been demonstrated to detect apoptosis more rapidly than other methods, and is low-cost, label-free and rapid, but has previously been unable to accurately quantify cells through the apoptotic process because cells in late apoptosis disintegrate, making cell tracking impossible. In this paper we use a novel method based on light absorbance and multi-population tracking to quantify the progress of apoptosis, benchmarking against conventional assays including MTT, trypan blue and Annexin-V. Analyses are performed on suspension and adherent cells, and using two apoptosis-inducing agents. IC50 measurements compared favourably to MTT and were superior to trypan blue, whilst also detecting apoptotic progression faster than Annexin-V.

Graphical abstract: Accurate quantification of apoptosis progression and toxicity using a dielectrophoretic approach

Back to tab navigation

Supplementary files

Publication details

The article was received on 14 Jul 2016, accepted on 16 Oct 2016 and first published on 19 Oct 2016


Article type: Paper
DOI: 10.1039/C6AN01596D
Citation: Analyst, 2016,141, 6408-6415
  • Open access: Creative Commons BY-NC license
  •   Request permissions

    Accurate quantification of apoptosis progression and toxicity using a dielectrophoretic approach

    E. A. Henslee, R. M. Torcal Serrano, F. H. Labeed, R. I. Jabr, C. H. Fry, M. P. Hughes and K. F. Hoettges, Analyst, 2016, 141, 6408
    DOI: 10.1039/C6AN01596D

    This article is licensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence. Material from this article can be used in other publications provided that the correct acknowledgement is given with the reproduced material and it is not used for commercial purposes.

    Reproduced material should be attributed as follows:

    • For reproduction of material from NJC:
      [Original citation] - Published by The Royal Society of Chemistry (RSC) on behalf of the Centre National de la Recherche Scientifique (CNRS) and the RSC.
    • For reproduction of material from PCCP:
      [Original citation] - Published by the PCCP Owner Societies.
    • For reproduction of material from PPS:
      [Original citation] - Published by The Royal Society of Chemistry (RSC) on behalf of the European Society for Photobiology, the European Photochemistry Association, and RSC.
    • For reproduction of material from all other RSC journals:
      [Original citation] - Published by The Royal Society of Chemistry.

    Information about reproducing material from RSC articles with different licences is available on our Permission Requests page.

Search articles by author

Spotlight

Advertisements