Issue 24, 2015

Triarylamine-based crosslinked hole-transporting material with an ionic dopant for high-performance PEDOT:PSS-free polymer solar cells

Abstract

A triarylamine-based material DVTPD containing two styryl groups has been developed. Upon isothermal heating at 180 °C for 30 min, DVTPD can be thermally cross-linked to form a solvent-resistant layer to realize the fabrication of solution-processed multilayer devices. The crosslinked DVTPD (denoted as X-DVTPD) layer possesses not only hole-collecting ability (HOMO = −5.3 eV) but also electron-blocking capability (LUMO = −2.2 eV). By incorporation of an ionic dopant, 4-isopropyl-4′-methyldiphenyliodonium tetrakis(pentafluorophenylborate) (DPITPFB), into the X-DVTPD material (1 : 10 in wt%), a favourable morphology of the dopant/matrix layer was formed and the hole-mobility is significantly improved by three orders of magnitude compared to its non-doped state. This DPITPFB : X-DVTPD (1 : 10 in wt%) layer was employed as the hole-transporting layer to fabricate polymer solar cell devices (PSCs). The EHOMO of the polymer in the active layer relative to the EHOMO of the X-DVTPD (−5.3 eV) governs the hole transportation highly associated with the device performance. The higher-lying EHOMO (−5.0 eV) of P3HT causes a large energy barrier for the hole transportation at the interface, leading to an unsatisfactory efficiency. The EHOMO level of the PTB7 copolymer (−5.15 eV) is closer to −5.3 eV. As a result, the PTB7-based device can achieve 80% of the efficiency obtained from the corresponding PEDOT:PSS-based device. Furthermore, the PBDCPDTFBT copolymer has the same EHOMO (−5.3 eV) with X-DVTPD. Consequently, the PBDCPDTFBT-based device showed a comparable efficiency of 5.3% to the corresponding PEDOT:PSS-based device. More importantly, PNDTDTFBT having the lowest-lying EHOMO of −5.4 eV exhibits superior performance with a high PCE of 6.64%, outperforming its reference PEDOT:PSS-based device. This simple and useful hole-transporting system integrating the crosslinking and doping strategies to replace PEDOT:PSS can be widely used in solution-processed organic electronic devices.

Graphical abstract: Triarylamine-based crosslinked hole-transporting material with an ionic dopant for high-performance PEDOT:PSS-free polymer solar cells

Article information

Article type
Paper
Submitted
13 Mar 2015
Accepted
17 Apr 2015
First published
30 Apr 2015

J. Mater. Chem. C, 2015,3, 6158-6165

Author version available

Triarylamine-based crosslinked hole-transporting material with an ionic dopant for high-performance PEDOT:PSS-free polymer solar cells

C. Tsai, M. Liao, Y. Chen, S. Cheng, Y. Lai, Y. Cheng and C. Hsu, J. Mater. Chem. C, 2015, 3, 6158 DOI: 10.1039/C5TC00714C

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements