Issue 9, 2015

Fine-tuning thermoresponsive functional poly(ε-caprolactone)s to enhance micelle stability and drug loading

Abstract

Block copolymers synthesized by the ring-opening polymerization of γ-2-[2-(2-methoxyethoxy)ethoxy]ethoxy-ε-caprolactone (ME3CL), γ-2-methoxyethoxy-ε-caprolactone (ME1CL), and ε-caprolactone (CL) are reported. Previously, diblock copolymers of PME3CL-b-PME1CL displayed excellent thermoresponsive tunability (31–43 °C) and self-assembled into micelles with moderate thermodynamic stability. In this report, two strategies are employed to enhance thermodynamic stability of PME3CL/PME1CL-type block copolymer micelles while maintaining their attractive thermoresponsive qualities: modification of the end group position and alteration of hydrophobic block composition by using both ME1CL and CL. These new thermoresponsive amphiphilic block copolymers showed lower critical micelle concentration (CMC) values by one order of magnitude and formed thermodynamically stable micelles. Furthermore they demonstrated good biocompatibility and up to 4.97 wt% doxorubicin loading, more than double the amount loaded into the PME3CL-type polymeric micelles previously reported.

Graphical abstract: Fine-tuning thermoresponsive functional poly(ε-caprolactone)s to enhance micelle stability and drug loading

Supplementary files

Article information

Article type
Paper
Submitted
08 Dec 2014
Accepted
16 Jan 2015
First published
16 Jan 2015

J. Mater. Chem. B, 2015,3, 1779-1787

Author version available

Fine-tuning thermoresponsive functional poly(ε-caprolactone)s to enhance micelle stability and drug loading

E. A. Rainbolt, J. B. Miller, K. E. Washington, S. A. Senevirathne, M. C. Biewer, D. J. Siegwart and M. C. Stefan, J. Mater. Chem. B, 2015, 3, 1779 DOI: 10.1039/C4TB02016B

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements