Issue 47, 2015

Bimetallic porous porphyrin polymer-derived non-precious metal electrocatalysts for oxygen reduction reactions

Abstract

The development of efficient and stable electrocatalysts on the basis of non-precious metals (Co, Fe) is considered as one of the most promising routes to replace expensive and susceptible platinum as the oxygen reduction reaction (ORR) catalyst. Here we report a synthetic strategy for the precursor controlled, template-free preparation of novel mono- (Fe; Co) and bimetallic (Fe/Co) nitrogen-doped porous carbons and their electrocatalytic performance towards the ORR. The precursors are composed of metal–porphyrin based conjugated microporous polymers (M-CMPs with M = Fe; Co; Fe/Co) derived from polymerization of metalloporphyrins by the Suzuki polycondensation reaction, which enables the synthesis of bimetallic polymers with alternating metal–porphyrin units for the preparation of carbon-based catalysts with homogenously distributed CoN4 and FeN4 centres. Subsequent pyrolysis of the networks reveals the key role of pre-morphology and network composition on the active sites. 57Fe-Mössbauer spectroscopy was conducted on iron catalysts (Fe; Fe/Co) to determine the coordination of Fe within the N-doped carbon matrix and the catalytic activity-enhancing shift in electron density. In acidic media the bimetallic catalyst demonstrates a synergetic effect for cobalt and iron active sites, mainly through a 4-electron transfer process, achieving an onset potential of 0.88 V (versus a reversible hydrogen electrode) and a half-wave potential of 0.78 V, which is only 0.06 V less than that of the state-of-the-art Pt/C catalyst.

Graphical abstract: Bimetallic porous porphyrin polymer-derived non-precious metal electrocatalysts for oxygen reduction reactions

Supplementary files

Article information

Article type
Paper
Submitted
11 Aug 2015
Accepted
20 Oct 2015
First published
20 Oct 2015
This article is Open Access
Creative Commons BY-NC license

J. Mater. Chem. A, 2015,3, 23799-23808

Bimetallic porous porphyrin polymer-derived non-precious metal electrocatalysts for oxygen reduction reactions

S. Brüller, H. Liang, U. I. Kramm, J. W. Krumpfer, X. Feng and K. Müllen, J. Mater. Chem. A, 2015, 3, 23799 DOI: 10.1039/C5TA06309D

This article is licensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence. You can use material from this article in other publications, without requesting further permission from the RSC, provided that the correct acknowledgement is given and it is not used for commercial purposes.

To request permission to reproduce material from this article in a commercial publication, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party commercial publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements