Issue 33, 2015

Repelling hot water from superhydrophobic surfaces based on carbon nanotubes

Abstract

Superhydrophobic (SH) surfaces generally refer to those having a static water contact angle larger than 150° and a slide angle less than 10°, when both the surface and the water droplet are at room temperature. Most such surfaces lose superhydrophobicity when exposed to hot (e.g., >55 °C) water. Our recently published results (Z. J. Yu, J. Y. Yang, W. Fang, Q. Ge, L.-L. Yang, Z.-L. Ding, D.-Q. Yang, E. Sacher and T. T. Isimjan, Journal of Materials Chemistry A, 2014, 2 10639) indicated that hot water superhydrophobicity is maintained when the SH surface temperature is higher than that of the water droplet. Here, we find that carbon nanotubes (CNTs) can be developed into SH surface coatings that repel hot water without any limitation to the surface temperature. Our SEM observations demonstrate that nanostructures formed by CNTs, contributing both a high porosity and a small water droplet contact area, will maintain superhydrophobicity even for hot water. In particular, a composite, made of CNTs and an organic silicone resin binder, shows both excellent hot water repellency and mechanical robustness, which, together, promise potential applications in hot liquid self-cleaning and high efficiency heat transfer.

Graphical abstract: Repelling hot water from superhydrophobic surfaces based on carbon nanotubes

Supplementary files

Article information

Article type
Communication
Submitted
11 Jul 2015
Accepted
29 Jul 2015
First published
29 Jul 2015

J. Mater. Chem. A, 2015,3, 16953-16960

Repelling hot water from superhydrophobic surfaces based on carbon nanotubes

F. Wan, D. Yang and E. Sacher, J. Mater. Chem. A, 2015, 3, 16953 DOI: 10.1039/C5TA05231A

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements