Jump to main content
Jump to site search

Issue 41, 2015
Previous Article Next Article

Mechanosynthesis of the hybrid perovskite CH3NH3PbI3: characterization and the corresponding solar cell efficiency

Author affiliations

Abstract

We present a facile mechanochemical route for the preparation of hybrid CH3NH3PbI3 (MAPbI3) perovskite particles with the size of several hundred nanometers for high-efficiency thin-film photovoltaic devices. Powder X-ray diffraction measurements demonstrate that mechanosynthesis is a suitable strategy to produce a highly crystalline CH3NH3PbI3 material showing no detectable amounts of the starting CH3NH3I and PbI2 reagents. Thermal stability measurements based on the thermogravimetric analysis data of mechanosynthesized perovskite particles indicated that the as-ground MAPbI3 is stable up to 300 °C with no detectable material loss at lower temperatures. The optical properties of newly synthesized perovskite particles were characterized by applying steady state absorption and fluorescence spectroscopy, which confirmed a direct band-gap of 1.48 eV. Time resolved single photon counting measurements revealed that 70% of charges undergo recombination with a 61 ns lifetime. The solar cell devices made from mechanosynthesized perovskite particles achieved a power conversion efficiency of 9.1% when applying a one step deposition method.

Graphical abstract: Mechanosynthesis of the hybrid perovskite CH3NH3PbI3: characterization and the corresponding solar cell efficiency

Back to tab navigation

Supplementary files

Publication details

The article was received on 01 Jul 2015, accepted on 25 Aug 2015 and first published on 27 Aug 2015


Article type: Paper
DOI: 10.1039/C5TA04904K
Citation: J. Mater. Chem. A, 2015,3, 20772-20777
  •   Request permissions

    Mechanosynthesis of the hybrid perovskite CH3NH3PbI3: characterization and the corresponding solar cell efficiency

    D. Prochowicz, M. Franckevičius, A. M. Cieślak, S. M. Zakeeruddin, M. Grätzel and J. Lewiński, J. Mater. Chem. A, 2015, 3, 20772
    DOI: 10.1039/C5TA04904K

Search articles by author

Spotlight

Advertisements