Issue 30, 2015

Cellulose nanofibril core–shell silica coatings and their conversion into thermally stable nanotube aerogels

Abstract

A facile water-based one-pot reaction protocol for obtaining 20 nm thick uniform silica coatings on cellulose nanofibrils (CNFs) is herein presented for the first time. The fully covering silica shells result in the thermal stability of the CNFs improved by ca. 70 °C and 50 °C under nitrogen and oxygen atmospheres, respectively. Heating of the core–shell hybrid fibres to 400 °C results in complete degradation/removal of the CNF cores, and demonstrates an inexpensive route to large-scale preparation of silica nanotubes with the CNFs used as templates. The key to a uniform condensation of silica (from tetraethyl orthosilicate) to cellulose is a reaction medium that permits in situ nucleation and growth of the silica phase on the fibrils, while simultaneously matching the quantity of the condensed silica with the specific surface area of the CNFs. Most coatings were applied to bundles of 2–3 associated CNFs, which could be discerned from their negative imprint that remained inside the silica nanotubes. Finally, it is demonstrated that the coated nanofibrils can be freeze-dried into highly porous silica/cellulose aerogels with a density of 0.005 g cm−3 and how these hybrid aerogels preserve their shape when extensively exposed to 400 °C in air (>6 h). The resulting material is the first reported silica nanotube aerogel obtained by using cellulose nanofibrils as templates.

Graphical abstract: Cellulose nanofibril core–shell silica coatings and their conversion into thermally stable nanotube aerogels

Supplementary files

Article information

Article type
Paper
Submitted
19 May 2015
Accepted
12 Jun 2015
First published
12 Jun 2015
This article is Open Access
Creative Commons BY-NC license

J. Mater. Chem. A, 2015,3, 15745-15754

Author version available

Cellulose nanofibril core–shell silica coatings and their conversion into thermally stable nanotube aerogels

D. Liu, Q. Wu, R. L. Andersson, M. S. Hedenqvist, S. Farris and R. T. Olsson, J. Mater. Chem. A, 2015, 3, 15745 DOI: 10.1039/C5TA03646A

This article is licensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence. You can use material from this article in other publications, without requesting further permission from the RSC, provided that the correct acknowledgement is given and it is not used for commercial purposes.

To request permission to reproduce material from this article in a commercial publication, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party commercial publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements