Issue 31, 2015

Poly(vinylidene fluoride) nanofibrous mats with covalently attached SiO2 nanoparticles as an ionic liquid host: enhanced ion transport for electrochromic devices and lithium-ion batteries

Abstract

In this article, it is demonstrated that the electrospun poly(vinylidene fluoride-co-hexafluoropropylene) (P(VDF–HFP)) nanofibrous mat functionalized with (3-aminopropyl)triethoxysilane is a versatile platform for the fabrication of hybrid nanofibrous mats by covalently attaching various types of inorganic oxide nanoparticles on the nanofiber surface via a sol–gel process. In particular, SiO2-on-P(VDF–HFP) nanofibrous mats synthesized using this method is an excellent ionic liquid (IL) host for electrolyte applications. The IL-based electrolytes in the form of free-standing mats are obtained by immersing SiO2-on-P(VDF–HFP) mats in two types of liquid electrolytes, namely LiClO4/1-butyl-3-methylimidazolium tetrafluoroborate and bis(trifluoromethane)sulfonimide lithium salt/1-butyl-1-methylpyrrolidinium bis(trifluoromethylsulfonyl)imide. It is found that the surface attached SiO2 nanoparticles can effectively serve as salt dissociation promoters by interacting with the anions of both ILs and lithium salts through Lewis acid–base interactions. They dramatically enhance the ionic conductivity and lithium transference number of the electrolytes. In addition, better compatibility of the electrolytes with lithium electrodes is also observed in the presence of surface-attached SiO2. Using IL-loaded SiO2-on-P(VDF–HFP) nanofibrous mats as the electrolytes, electrochromic devices display higher transmittance contrast, while Li/LiCoO2 batteries show significantly improved C-rate performance and cycling stability. This class of novel non-volatile electrolytes with high ionic conductivity also has the potential to be used in other electrochemical devices.

Graphical abstract: Poly(vinylidene fluoride) nanofibrous mats with covalently attached SiO2 nanoparticles as an ionic liquid host: enhanced ion transport for electrochromic devices and lithium-ion batteries

Supplementary files

Article information

Article type
Paper
Submitted
24 Mar 2015
Accepted
25 Jun 2015
First published
30 Jun 2015
This article is Open Access
Creative Commons BY-NC license

J. Mater. Chem. A, 2015,3, 16040-16049

Author version available

Poly(vinylidene fluoride) nanofibrous mats with covalently attached SiO2 nanoparticles as an ionic liquid host: enhanced ion transport for electrochromic devices and lithium-ion batteries

R. Zhou, W. Liu, X. Yao, Y. W. Leong and X. Lu, J. Mater. Chem. A, 2015, 3, 16040 DOI: 10.1039/C5TA02154E

This article is licensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence. You can use material from this article in other publications, without requesting further permission from the RSC, provided that the correct acknowledgement is given and it is not used for commercial purposes.

To request permission to reproduce material from this article in a commercial publication, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party commercial publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements